Derivative-based spatial mediation with INLA-SPDE

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Claudio Rubino , Chiara Di Maria , Antonino Abbruzzo , Gioacchino Bono , Germana Garofalo , Giacomo Milisenda , Giada Adelfio
{"title":"Derivative-based spatial mediation with INLA-SPDE","authors":"Claudio Rubino ,&nbsp;Chiara Di Maria ,&nbsp;Antonino Abbruzzo ,&nbsp;Gioacchino Bono ,&nbsp;Germana Garofalo ,&nbsp;Giacomo Milisenda ,&nbsp;Giada Adelfio","doi":"10.1016/j.spasta.2025.100885","DOIUrl":null,"url":null,"abstract":"<div><div>In many applied fields, it may be of interest to evaluate mediational mechanisms occurring in spatial domains. The approaches proposed so far in the literature to address this issue deal with areal data and often consider linear models. In this paper, we propose an approach to assess mediation in the presence of geostatistical data by combining the integrated nested Laplace approximation (INLA) with a derivative-based approach for mediation analysis, which allows one to estimate indirect effects also in the case of nonlinear models. We investigate the effect of ignoring spatial processes in the mediator and the outcome models through a simulation study, focusing also on the case of correlated processes. To show the usefulness of our approach, we also provided an ecological application.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"66 ","pages":"Article 100885"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000077","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In many applied fields, it may be of interest to evaluate mediational mechanisms occurring in spatial domains. The approaches proposed so far in the literature to address this issue deal with areal data and often consider linear models. In this paper, we propose an approach to assess mediation in the presence of geostatistical data by combining the integrated nested Laplace approximation (INLA) with a derivative-based approach for mediation analysis, which allows one to estimate indirect effects also in the case of nonlinear models. We investigate the effect of ignoring spatial processes in the mediator and the outcome models through a simulation study, focusing also on the case of correlated processes. To show the usefulness of our approach, we also provided an ecological application.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信