Surface tailored spent coffee ground derived carbon reinforced waste HDPE composites for 3D printing application

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
Sushrisangita Sahoo, Abhinav Yadav, Vijaya Rangari
{"title":"Surface tailored spent coffee ground derived carbon reinforced waste HDPE composites for 3D printing application","authors":"Sushrisangita Sahoo,&nbsp;Abhinav Yadav,&nbsp;Vijaya Rangari","doi":"10.1016/j.jcomc.2025.100570","DOIUrl":null,"url":null,"abstract":"<div><div>The serious impact of plastic waste on environmental pollution and climate change led to new strategies like recycle, reuse, reduce concept. This work presents a unique sustainable approach of developing filament composites with improved thermal and mechanical properties by mixing the plastic waste (i.e. waste Walmart bag, High Density Polyethylene (HDPE)) and surface engineered spent coffee ground (SCG) waste derived carbon. Carbon as filler materials were obtained by pyrolyzing the SCG waste. As the biomass derived carbon generally has inert surface properties, it causes poor compatibility between the filler and polymer matrix yielding inferior thermal and mechanical properties of the composites. So, the properties of pyrolyzed carbon in the present work were tailored by SF<sub>6</sub> plasma treatment at different time durations. The surface functionalization of carbon materials and optimized plasma treatment time were analyzed from different characterizations. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) reveals 15 min plasma treatment carbon is the optimized one with highest fluorination and semi-ionic C-F bonding. Due to the highest fluorination, the I<sub>D</sub>/I<sub>G</sub> ratio i.e. the defect density is found to be maximum for 15 min plasma treated carbon from the Raman spectra. The 15 min plasma treated carbon with highest fluorine functionalization as a filler exhibits 33.8 % and 13.97 % improvement in tensile modulus and tensile strength in comparison to neat HDPE matrix. The feasibility test of filament composites for 3D printing suggests its application potentiality in Material extrusion (MEX) 3D printing.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"16 ","pages":"Article 100570"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682025000143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

The serious impact of plastic waste on environmental pollution and climate change led to new strategies like recycle, reuse, reduce concept. This work presents a unique sustainable approach of developing filament composites with improved thermal and mechanical properties by mixing the plastic waste (i.e. waste Walmart bag, High Density Polyethylene (HDPE)) and surface engineered spent coffee ground (SCG) waste derived carbon. Carbon as filler materials were obtained by pyrolyzing the SCG waste. As the biomass derived carbon generally has inert surface properties, it causes poor compatibility between the filler and polymer matrix yielding inferior thermal and mechanical properties of the composites. So, the properties of pyrolyzed carbon in the present work were tailored by SF6 plasma treatment at different time durations. The surface functionalization of carbon materials and optimized plasma treatment time were analyzed from different characterizations. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) reveals 15 min plasma treatment carbon is the optimized one with highest fluorination and semi-ionic C-F bonding. Due to the highest fluorination, the ID/IG ratio i.e. the defect density is found to be maximum for 15 min plasma treated carbon from the Raman spectra. The 15 min plasma treated carbon with highest fluorine functionalization as a filler exhibits 33.8 % and 13.97 % improvement in tensile modulus and tensile strength in comparison to neat HDPE matrix. The feasibility test of filament composites for 3D printing suggests its application potentiality in Material extrusion (MEX) 3D printing.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信