Induced pluripotent stem cell–based tissue models to study malaria: a new player in the research game

IF 5.9 2区 生物学 Q1 MICROBIOLOGY
François Korbmacher , Maria Bernabeu
{"title":"Induced pluripotent stem cell–based tissue models to study malaria: a new player in the research game","authors":"François Korbmacher ,&nbsp;Maria Bernabeu","doi":"10.1016/j.mib.2025.102585","DOIUrl":null,"url":null,"abstract":"<div><div>Most <em>in vitro</em> studies on parasite development and pathogenesis in the human host have been conducted using traditional primary or immortalized cells, despite their inherent limitations. Breakthroughs in the field of induced pluripotent stem cells (iPSCs) are revolutionizing disease modeling, offering alternatives to traditional <em>in vivo</em> and <em>in vitro</em> infection models. Human iPSCs differentiate into all cell types, proliferate indefinitely, and offer experimental advantages, like genome editing and donor control. iPSCs can be engineered into complex 3D tissue models that closely mimic morphology and function of their <em>in vivo</em> counterparts and allow for precise experimental manipulation.</div><div>The physiological complexity of iPSC-based tissue models has improved rapidly. Given <em>Plasmodium</em>'s systemic impact across multiple organs, these models provide an invaluable resource for studying parasite–tissue interactions. This opinion article focuses on recent developments of iPSC-based models for <em>Plasmodium</em> research. We describe the main highlights and potential use of these systems while acknowledging current limitations.</div></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"84 ","pages":"Article 102585"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369527425000074","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Most in vitro studies on parasite development and pathogenesis in the human host have been conducted using traditional primary or immortalized cells, despite their inherent limitations. Breakthroughs in the field of induced pluripotent stem cells (iPSCs) are revolutionizing disease modeling, offering alternatives to traditional in vivo and in vitro infection models. Human iPSCs differentiate into all cell types, proliferate indefinitely, and offer experimental advantages, like genome editing and donor control. iPSCs can be engineered into complex 3D tissue models that closely mimic morphology and function of their in vivo counterparts and allow for precise experimental manipulation.
The physiological complexity of iPSC-based tissue models has improved rapidly. Given Plasmodium's systemic impact across multiple organs, these models provide an invaluable resource for studying parasite–tissue interactions. This opinion article focuses on recent developments of iPSC-based models for Plasmodium research. We describe the main highlights and potential use of these systems while acknowledging current limitations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current opinion in microbiology
Current opinion in microbiology 生物-微生物学
CiteScore
10.00
自引率
0.00%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Microbiology is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of microbiology. It consists of 6 issues per year covering the following 11 sections, each of which is reviewed once a year: Host-microbe interactions: bacteria Cell regulation Environmental microbiology Host-microbe interactions: fungi/parasites/viruses Antimicrobials Microbial systems biology Growth and development: eukaryotes/prokaryotes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信