The unit of analysis in learner corpus research on formulaic language

IF 2.1
Joe Geluso , Hui-Hsien Feng , Randy Appel
{"title":"The unit of analysis in learner corpus research on formulaic language","authors":"Joe Geluso ,&nbsp;Hui-Hsien Feng ,&nbsp;Randy Appel","doi":"10.1016/j.acorp.2025.100123","DOIUrl":null,"url":null,"abstract":"<div><div>This study employs two case studies to investigate how differences in the unit of analysis in learner corpus research (LCR) studies on formulaic language (e.g., lexical bundles and phrase frames) have the potential to lead researchers to disparate inferences even when analyzing the same corpora. LCR studies on written formulaic language (FL) commonly use the corpus as the unit of analysis, or a per-corpus approach, for inter-group comparisons. This approach combines essays from different individuals into a single long essay that represents the entire group. Less frequently, LCR studies on FL use the individual texts that comprise a corpus as the unit of analysis, or a per-text approach. A per-text approach allows the researcher to generate group means and standard deviations, or ranked frequencies at the text level. Findings suggest that the two research designs can lead to different results and hence conflicting inferences from the same data set. Specifically, a per-text approach appears less prone to identify significant differences between groups than a per-corpus approach, and better reflects similarities between groups such as the absence of linguistic features. We conclude with instructions on how to generate per-text counts using a popular and free corpus analysis tool.</div></div>","PeriodicalId":72254,"journal":{"name":"Applied Corpus Linguistics","volume":"5 1","pages":"Article 100123"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Corpus Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666799125000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs two case studies to investigate how differences in the unit of analysis in learner corpus research (LCR) studies on formulaic language (e.g., lexical bundles and phrase frames) have the potential to lead researchers to disparate inferences even when analyzing the same corpora. LCR studies on written formulaic language (FL) commonly use the corpus as the unit of analysis, or a per-corpus approach, for inter-group comparisons. This approach combines essays from different individuals into a single long essay that represents the entire group. Less frequently, LCR studies on FL use the individual texts that comprise a corpus as the unit of analysis, or a per-text approach. A per-text approach allows the researcher to generate group means and standard deviations, or ranked frequencies at the text level. Findings suggest that the two research designs can lead to different results and hence conflicting inferences from the same data set. Specifically, a per-text approach appears less prone to identify significant differences between groups than a per-corpus approach, and better reflects similarities between groups such as the absence of linguistic features. We conclude with instructions on how to generate per-text counts using a popular and free corpus analysis tool.
公式化语言学习者语料库研究中的分析单元
本研究采用两个案例研究来探讨学习者语料库研究(LCR)中对形式化语言(如词汇束和短语框架)的分析单元的差异如何导致研究人员在分析同一语料库时得出不同的推论。书面公式化语言(FL)的LCR研究通常使用语料库作为分析单位,或使用每语料库方法进行组间比较。这种方法将来自不同个人的文章组合成一篇代表整个群体的长篇文章。LCR对外语的研究很少使用组成语料库的单个文本作为分析单元,或者使用逐文本方法。每个文本方法允许研究人员生成组均值和标准偏差,或在文本水平上排名频率。研究结果表明,两种研究设计可能导致不同的结果,从而从同一数据集得出相互矛盾的推论。具体来说,与按语料库方法相比,按文本方法似乎更不容易识别组间的显著差异,并且更好地反映组间的相似性,例如缺乏语言特征。最后,我们给出了如何使用流行的免费语料库分析工具生成每个文本计数的说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Corpus Linguistics
Applied Corpus Linguistics Linguistics and Language
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
70 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信