Faisal Bin Ashraf , Hannu Huuki , Ali Torabi Haghighi , Artti Juutinen , Atso Romakkaniemi , Hannu Marttila
{"title":"Valued peaks: Sustainable water allocation for small hydropower plants in an era of explicit ecological needs","authors":"Faisal Bin Ashraf , Hannu Huuki , Ali Torabi Haghighi , Artti Juutinen , Atso Romakkaniemi , Hannu Marttila","doi":"10.1016/j.renene.2025.122756","DOIUrl":null,"url":null,"abstract":"<div><div>Optimizing hydropower operations to balance economic profitability and support functioning ecosystem services is integral to river management policy. In this article, we propose a dynamic, constrained optimization framework for small hydropower plants (SHPs) to evaluate trade-offs between economic profitability and socio-ecological requirements. Specifically, we examine the balance between short-term losses in hydropower generation and the potential for compensatory benefits in the form of revenue from recreational ecosystem services, irrespective of the direct beneficiary. Our framework integrates a fish habitat model, a hydropower optimization model, and a recreational ecosystem service estimate to evaluate different environmental flow scenarios. The optimization process gives three outflow release scenarios, informed by previous streamflow realisations (dam inflow), and designed environmental flow constraints. The framework is applied and tested for the river Kuusinkijoki in North-eastern Finland, which is a habitat for migratory brown trout and grayling populations. We show that the revenue loss due to the environmental flow constraints arises through a reduction in revenue per generated energy unit and through a reduction in turbine efficiency. Additionally, the simulation results reveal that all the designed environmental flow constraints cannot be met simultaneously. Under the environmental flow scenario with both minimum flow and flow ramping rate constraints, the annual hydropower revenue decreases by 16.5 %. An annual increase of 8 % in recreational fishing visits offsets the revenue loss. The developed framework provides knowledge of the costs and benefits of hydropower environmental flow constraints and guides the prioritizing process of environmental measures.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"244 ","pages":"Article 122756"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125004185","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Optimizing hydropower operations to balance economic profitability and support functioning ecosystem services is integral to river management policy. In this article, we propose a dynamic, constrained optimization framework for small hydropower plants (SHPs) to evaluate trade-offs between economic profitability and socio-ecological requirements. Specifically, we examine the balance between short-term losses in hydropower generation and the potential for compensatory benefits in the form of revenue from recreational ecosystem services, irrespective of the direct beneficiary. Our framework integrates a fish habitat model, a hydropower optimization model, and a recreational ecosystem service estimate to evaluate different environmental flow scenarios. The optimization process gives three outflow release scenarios, informed by previous streamflow realisations (dam inflow), and designed environmental flow constraints. The framework is applied and tested for the river Kuusinkijoki in North-eastern Finland, which is a habitat for migratory brown trout and grayling populations. We show that the revenue loss due to the environmental flow constraints arises through a reduction in revenue per generated energy unit and through a reduction in turbine efficiency. Additionally, the simulation results reveal that all the designed environmental flow constraints cannot be met simultaneously. Under the environmental flow scenario with both minimum flow and flow ramping rate constraints, the annual hydropower revenue decreases by 16.5 %. An annual increase of 8 % in recreational fishing visits offsets the revenue loss. The developed framework provides knowledge of the costs and benefits of hydropower environmental flow constraints and guides the prioritizing process of environmental measures.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.