Rapid synthesis of carbon quantum dot-integrated metal–organic framework nanosheets via electron beam irradiation for selective 5-hydroxymethylfurfural electrooxidation

Qianjia Ni , Mingwan Zhang , Bijun Tang , Weidong Hou , Kang Wang , Huazhang Guo , Jiye Zhang , Tao Han , Minghong Wu , Liang Wang
{"title":"Rapid synthesis of carbon quantum dot-integrated metal–organic framework nanosheets via electron beam irradiation for selective 5-hydroxymethylfurfural electrooxidation","authors":"Qianjia Ni ,&nbsp;Mingwan Zhang ,&nbsp;Bijun Tang ,&nbsp;Weidong Hou ,&nbsp;Kang Wang ,&nbsp;Huazhang Guo ,&nbsp;Jiye Zhang ,&nbsp;Tao Han ,&nbsp;Minghong Wu ,&nbsp;Liang Wang","doi":"10.1016/j.apmate.2025.100267","DOIUrl":null,"url":null,"abstract":"<div><div>Balancing the adsorption of OH⁻ and 5-hydroxymethylfurfural (HMF) is crucial in optimizing the competing HMF oxidation reaction and oxygen evolution reaction, especially given the polymerization tendency of HMF in alkaline solutions. Herein, we present an innovative approach for rapidly synthesizing a NiFe bimetallic metal-organic framework (MOF) induced by electron-withdrawing carbon quantum dot (EW-CQD) via electron beam irradiation within 2 ​min. EW-CQD serve as structural regulators, expanding the NiFe-MOF interlayer spacing, increasing reactive site availability, and more effectively balancing the adsorption of OH<sup>−</sup> and HMF, thereby significantly boosting the oxidation activity of HMF. The resulting EW-CQD-MOF exhibits a low potential of 1.36 ​V vs. RHE at 10 ​mA ​cm⁻<sup>2</sup> and maintains excellent durability over 120 ​h. Comprehensive in situ characterization elucidates the HMF oxidation reaction pathway, showing high selectivity towards 2,5-furandicarboxylic acid (FDCA) under ambient conditions, with an impressive HMF conversion rate of 94% and FDCA selectivity of 96% within 6 ​h. These findings underscore the critical role of structural optimization and adsorption balance in catalytic performance enhancement and offer valuable insights for designing high-efficiency catalysts, advancing sustainable catalytic processes.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 2","pages":"Article 100267"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X2500003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Balancing the adsorption of OH⁻ and 5-hydroxymethylfurfural (HMF) is crucial in optimizing the competing HMF oxidation reaction and oxygen evolution reaction, especially given the polymerization tendency of HMF in alkaline solutions. Herein, we present an innovative approach for rapidly synthesizing a NiFe bimetallic metal-organic framework (MOF) induced by electron-withdrawing carbon quantum dot (EW-CQD) via electron beam irradiation within 2 ​min. EW-CQD serve as structural regulators, expanding the NiFe-MOF interlayer spacing, increasing reactive site availability, and more effectively balancing the adsorption of OH and HMF, thereby significantly boosting the oxidation activity of HMF. The resulting EW-CQD-MOF exhibits a low potential of 1.36 ​V vs. RHE at 10 ​mA ​cm⁻2 and maintains excellent durability over 120 ​h. Comprehensive in situ characterization elucidates the HMF oxidation reaction pathway, showing high selectivity towards 2,5-furandicarboxylic acid (FDCA) under ambient conditions, with an impressive HMF conversion rate of 94% and FDCA selectivity of 96% within 6 ​h. These findings underscore the critical role of structural optimization and adsorption balance in catalytic performance enhancement and offer valuable insights for designing high-efficiency catalysts, advancing sustainable catalytic processes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信