Structure-tailored superlattice Bi7Ti4NbO21: Coupling octahedral tilting and rotation induced high ferroelectric polarization for efficient piezo-photocatalytic CO2 reduction

Jingren Ni , Rufang Zhao , Chendi Shi , Yuanyuan Ji , Aize Hao , Aiting Xie , Hongjian Yu , Siew Kheng Boong , Hiang Kwee Lee , Chuanqiang Zhou , Jie Han
{"title":"Structure-tailored superlattice Bi7Ti4NbO21: Coupling octahedral tilting and rotation induced high ferroelectric polarization for efficient piezo-photocatalytic CO2 reduction","authors":"Jingren Ni ,&nbsp;Rufang Zhao ,&nbsp;Chendi Shi ,&nbsp;Yuanyuan Ji ,&nbsp;Aize Hao ,&nbsp;Aiting Xie ,&nbsp;Hongjian Yu ,&nbsp;Siew Kheng Boong ,&nbsp;Hiang Kwee Lee ,&nbsp;Chuanqiang Zhou ,&nbsp;Jie Han","doi":"10.1016/j.apmate.2025.100265","DOIUrl":null,"url":null,"abstract":"<div><div>Intergrowth ferroelectric semiconductors with excellent spontaneous polarization field are highly promising piezo-photocatalytic candidate materials. In addition, developing structural design and revealing polarization enhancement in-depth mechanism are top priorities. Herein, we introduce the intergrowth ferroelectrics Bi<sub>7</sub>Ti<sub>4</sub>NbO<sub>21</sub> thin-layer nanosheets for piezo-photocatalytic CO<sub>2</sub> reduction. Density functional theory (DFT) calculations indicate that interlayer lattice mismatch leads to increased tilting and rotation angle of Ti/NbO<sub>6</sub> octahedra on perovskite-like layers, serving as the main reason for increased polarization. Furthermore, the tilting and rotation angle of the interlayer octahedron further increase under stress, suggesting a stronger driving force generated to facilitate charge carrier separation efficiency. Meanwhile, Bi<sub>7</sub>Ti<sub>4</sub>NbO<sub>21</sub> nanosheets provide abundant active sites to effectively adsorb CO<sub>2</sub> and acquire sensitive stress response, thereby presenting synergistically advanced piezo-photocatalytic CO<sub>2</sub> reduction activity with a high CO generation rate of 426.97 ​μmol ​g<sup>−1</sup> ​h<sup>−1</sup>. Our work offers new perspectives and directions for initiating and investigating the mechanisms of high-performance intergrowth piezo-photocatalysts.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 2","pages":"Article 100265"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X25000016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intergrowth ferroelectric semiconductors with excellent spontaneous polarization field are highly promising piezo-photocatalytic candidate materials. In addition, developing structural design and revealing polarization enhancement in-depth mechanism are top priorities. Herein, we introduce the intergrowth ferroelectrics Bi7Ti4NbO21 thin-layer nanosheets for piezo-photocatalytic CO2 reduction. Density functional theory (DFT) calculations indicate that interlayer lattice mismatch leads to increased tilting and rotation angle of Ti/NbO6 octahedra on perovskite-like layers, serving as the main reason for increased polarization. Furthermore, the tilting and rotation angle of the interlayer octahedron further increase under stress, suggesting a stronger driving force generated to facilitate charge carrier separation efficiency. Meanwhile, Bi7Ti4NbO21 nanosheets provide abundant active sites to effectively adsorb CO2 and acquire sensitive stress response, thereby presenting synergistically advanced piezo-photocatalytic CO2 reduction activity with a high CO generation rate of 426.97 ​μmol ​g−1 ​h−1. Our work offers new perspectives and directions for initiating and investigating the mechanisms of high-performance intergrowth piezo-photocatalysts.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信