Yusheng Tang , Lutong Ma , Zhesheng Qiu , Wanzhang Yang , Bensong Chen , Yan Lin
{"title":"Sustainable approaches for multidimensional disposal and applications of aluminum dross: A review","authors":"Yusheng Tang , Lutong Ma , Zhesheng Qiu , Wanzhang Yang , Bensong Chen , Yan Lin","doi":"10.1016/j.mineng.2025.109194","DOIUrl":null,"url":null,"abstract":"<div><div>Aluminum dross (AD) represents a significant byproduct of the aluminum smelting process, characterized by its considerable content of elements such as Al, Si, N, and F, which imbue it with both substantial potential economic value and non-negligible environmental pollution risks. Consequently, the clean recovery and disposal of AD emerge as a pivotal challenge that the aluminum industry urgently needs to address. This paper delineates the origins of constituents within AD and their environmental ramifications. Furthermore, it thoroughly explores prevalent AD recuperation techniques while meticulously dissecting the detoxification mechanisms and technical nuances inherent to hydrometallurgical and pyrometallurgical approaches. Through resource recovery technology and the synergistic disposal of multiple hazardous wastes, strategies for AD disposal are systematically organized. Considering the characteristics of the aforementioned technologies, we have proposed a technique for the co-recovery of cryolite and aluminum fluoride synthesized from spent carbon anodes and AD. Finally, the challenges related to the recycling and utilization of AD were summarized and analyzed.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":"225 ","pages":"Article 109194"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687525000226","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aluminum dross (AD) represents a significant byproduct of the aluminum smelting process, characterized by its considerable content of elements such as Al, Si, N, and F, which imbue it with both substantial potential economic value and non-negligible environmental pollution risks. Consequently, the clean recovery and disposal of AD emerge as a pivotal challenge that the aluminum industry urgently needs to address. This paper delineates the origins of constituents within AD and their environmental ramifications. Furthermore, it thoroughly explores prevalent AD recuperation techniques while meticulously dissecting the detoxification mechanisms and technical nuances inherent to hydrometallurgical and pyrometallurgical approaches. Through resource recovery technology and the synergistic disposal of multiple hazardous wastes, strategies for AD disposal are systematically organized. Considering the characteristics of the aforementioned technologies, we have proposed a technique for the co-recovery of cryolite and aluminum fluoride synthesized from spent carbon anodes and AD. Finally, the challenges related to the recycling and utilization of AD were summarized and analyzed.
期刊介绍:
The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.