Angle-insensitive dual bound states in the continuum on germanium metasurface

Chip Pub Date : 2024-12-27 DOI:10.1016/j.chip.2024.100121
Yiqing Liu , Jinwen Lv , Ye Fan , Meixue Zong , Shubin Zhang , Zhengji Xu
{"title":"Angle-insensitive dual bound states in the continuum on germanium metasurface","authors":"Yiqing Liu ,&nbsp;Jinwen Lv ,&nbsp;Ye Fan ,&nbsp;Meixue Zong ,&nbsp;Shubin Zhang ,&nbsp;Zhengji Xu","doi":"10.1016/j.chip.2024.100121","DOIUrl":null,"url":null,"abstract":"<div><div>Metasurface-enabled bound states in the continuum (BICs) provide a novel solution for achieving exceptionally high quality factors (<em>Q</em> factors), which could overcome the limitations of traditional mid-infrared filters, sensors, lasers, and nonlinear sources. However, most BIC metasurfaces are restricted by their sensitivity to specific incident angles, limiting their practical applications. Here, we introduced a germanium-based metasurface that supports two BIC modes for different polarizations, exhibiting robust angle insensitivity. By leveraging geometric asymmetry, we effectively controlled BIC leakage and coupling. The device maintained infinite <em>Q</em> factors under oblique incidence with preserved symmetry, and exhibited stable quasi-BIC resonance wavelengths and linewidths even with broken symmetry, regardless of TE or TM polarization. This angular robustness has been validated both theoretically and experimentally, demonstrating its potential for broadening the applicability of high-performance mid-infrared optical devices.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 1","pages":"Article 100121"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S270947232400039X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metasurface-enabled bound states in the continuum (BICs) provide a novel solution for achieving exceptionally high quality factors (Q factors), which could overcome the limitations of traditional mid-infrared filters, sensors, lasers, and nonlinear sources. However, most BIC metasurfaces are restricted by their sensitivity to specific incident angles, limiting their practical applications. Here, we introduced a germanium-based metasurface that supports two BIC modes for different polarizations, exhibiting robust angle insensitivity. By leveraging geometric asymmetry, we effectively controlled BIC leakage and coupling. The device maintained infinite Q factors under oblique incidence with preserved symmetry, and exhibited stable quasi-BIC resonance wavelengths and linewidths even with broken symmetry, regardless of TE or TM polarization. This angular robustness has been validated both theoretically and experimentally, demonstrating its potential for broadening the applicability of high-performance mid-infrared optical devices.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信