Investigation on microstructures of typical particles in plasma spheroidized WC-Co powder

IF 4.2 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiacheng Li , Qiaoyun Shen , Zhenhua Hao , Rulong Ma , Pei Wang , Yongchun Shu , Jilin He
{"title":"Investigation on microstructures of typical particles in plasma spheroidized WC-Co powder","authors":"Jiacheng Li ,&nbsp;Qiaoyun Shen ,&nbsp;Zhenhua Hao ,&nbsp;Rulong Ma ,&nbsp;Pei Wang ,&nbsp;Yongchun Shu ,&nbsp;Jilin He","doi":"10.1016/j.ijrmhm.2025.107110","DOIUrl":null,"url":null,"abstract":"<div><div>Spheroidized WC-Co powder has more complex morphologies than other spherical powders. To investigate this phenomenon, this study divides spheroidized WC-Co powder into five categories based on the morphologies of WC grains and whether the WC grains were completely melted in plasma torch and discusses in detail their surface morphologies and formation mechanisms. It is found that the growth mechanisms of the typical particle A during spheroidization are dissolution-precipitation and aggregation and growth mechanisms. Furthermore, typical particle B has high spherical shapes, and its increased free carbon content suppresses the anisotropic growth of WC grains, leading to a transformation of the WC grains from needle-like to fine grains. Finally, typical particle C has coalescence of WC grains, and the free carbon may accumulate on the surface of black particle to form a shell, which can cause blurred SEM images.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"129 ","pages":"Article 107110"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825000757","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spheroidized WC-Co powder has more complex morphologies than other spherical powders. To investigate this phenomenon, this study divides spheroidized WC-Co powder into five categories based on the morphologies of WC grains and whether the WC grains were completely melted in plasma torch and discusses in detail their surface morphologies and formation mechanisms. It is found that the growth mechanisms of the typical particle A during spheroidization are dissolution-precipitation and aggregation and growth mechanisms. Furthermore, typical particle B has high spherical shapes, and its increased free carbon content suppresses the anisotropic growth of WC grains, leading to a transformation of the WC grains from needle-like to fine grains. Finally, typical particle C has coalescence of WC grains, and the free carbon may accumulate on the surface of black particle to form a shell, which can cause blurred SEM images.
等离子体球化WC-Co粉末中典型颗粒的显微组织研究
球化WC-Co粉末的形貌比其他球形粉末更为复杂。为了研究这一现象,本研究根据WC颗粒的形貌和WC颗粒在等离子炬中是否完全熔化将球化WC- co粉末分为五类,并详细讨论了其表面形貌和形成机制。发现球化过程中典型粒子A的生长机制为溶解沉淀和聚集生长机制。典型颗粒B具有较高的球形,其游离碳含量的增加抑制了WC晶粒的各向异性生长,导致WC晶粒由针状向细晶粒转变。最后,典型的C颗粒具有WC晶粒聚并,游离碳可能在黑色颗粒表面聚集形成壳层,导致SEM图像模糊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
13.90%
发文量
236
审稿时长
35 days
期刊介绍: The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信