Jiacheng Li , Qiaoyun Shen , Zhenhua Hao , Rulong Ma , Pei Wang , Yongchun Shu , Jilin He
{"title":"Investigation on microstructures of typical particles in plasma spheroidized WC-Co powder","authors":"Jiacheng Li , Qiaoyun Shen , Zhenhua Hao , Rulong Ma , Pei Wang , Yongchun Shu , Jilin He","doi":"10.1016/j.ijrmhm.2025.107110","DOIUrl":null,"url":null,"abstract":"<div><div>Spheroidized WC-Co powder has more complex morphologies than other spherical powders. To investigate this phenomenon, this study divides spheroidized WC-Co powder into five categories based on the morphologies of WC grains and whether the WC grains were completely melted in plasma torch and discusses in detail their surface morphologies and formation mechanisms. It is found that the growth mechanisms of the typical particle A during spheroidization are dissolution-precipitation and aggregation and growth mechanisms. Furthermore, typical particle B has high spherical shapes, and its increased free carbon content suppresses the anisotropic growth of WC grains, leading to a transformation of the WC grains from needle-like to fine grains. Finally, typical particle C has coalescence of WC grains, and the free carbon may accumulate on the surface of black particle to form a shell, which can cause blurred SEM images.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"129 ","pages":"Article 107110"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825000757","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spheroidized WC-Co powder has more complex morphologies than other spherical powders. To investigate this phenomenon, this study divides spheroidized WC-Co powder into five categories based on the morphologies of WC grains and whether the WC grains were completely melted in plasma torch and discusses in detail their surface morphologies and formation mechanisms. It is found that the growth mechanisms of the typical particle A during spheroidization are dissolution-precipitation and aggregation and growth mechanisms. Furthermore, typical particle B has high spherical shapes, and its increased free carbon content suppresses the anisotropic growth of WC grains, leading to a transformation of the WC grains from needle-like to fine grains. Finally, typical particle C has coalescence of WC grains, and the free carbon may accumulate on the surface of black particle to form a shell, which can cause blurred SEM images.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.