Coordinated control for distributed energy resources in Islanded microgrids with improved frequency regulation capability

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Teyang Zhao , Hui Liu , Jinshuo Su , Ni Wang , Zhiqiang Luo
{"title":"Coordinated control for distributed energy resources in Islanded microgrids with improved frequency regulation capability","authors":"Teyang Zhao ,&nbsp;Hui Liu ,&nbsp;Jinshuo Su ,&nbsp;Ni Wang ,&nbsp;Zhiqiang Luo","doi":"10.1016/j.renene.2025.122690","DOIUrl":null,"url":null,"abstract":"<div><div>With the increasing prevalence of renewable energies in islanded microgrids, wind turbine generators are becoming one of the main resources that provide frequency ancillary services by rapid and significant active power increments. Nevertheless, the substantial power increment will inevitably lead to a significant secondary frequency dip for the rotor speed restoration period and frequency overshoot for minor disturbances. This paper proposes an improved deloaded scheme to avoid the secondary frequency dip by increasing the frequency regulation reserve, which can also reduce the pitch angle adjustments. In the deloaded mode, based on the quantified frequency regulation reserve and operational limitations of wind turbine generators, an active power enhancement strategy is proposed to improve the frequency nadir by enhancing the active power contribution. The stable operation of the wind turbine generator can be ensured by varying the active power with the rotor speed. Moreover, to eliminate the frequency overshoot and improve the frequency response, a switching-based coordinated control strategy is proposed to flexibly regulate the active power outputs for wind turbine generators and distributed energy resources by switching different control strategies according to the frequency deviation. Finally, simulation results on an islanded microgrid validate the effectiveness of the proposed strategies. For instance, compared with active power reserve control, the proposed switching-based coordinated control can reduce the maximum frequency deviation by 32.2 % and 14.5 % in large load increase and decrease scenarios, respectively.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"244 ","pages":"Article 122690"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125003520","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing prevalence of renewable energies in islanded microgrids, wind turbine generators are becoming one of the main resources that provide frequency ancillary services by rapid and significant active power increments. Nevertheless, the substantial power increment will inevitably lead to a significant secondary frequency dip for the rotor speed restoration period and frequency overshoot for minor disturbances. This paper proposes an improved deloaded scheme to avoid the secondary frequency dip by increasing the frequency regulation reserve, which can also reduce the pitch angle adjustments. In the deloaded mode, based on the quantified frequency regulation reserve and operational limitations of wind turbine generators, an active power enhancement strategy is proposed to improve the frequency nadir by enhancing the active power contribution. The stable operation of the wind turbine generator can be ensured by varying the active power with the rotor speed. Moreover, to eliminate the frequency overshoot and improve the frequency response, a switching-based coordinated control strategy is proposed to flexibly regulate the active power outputs for wind turbine generators and distributed energy resources by switching different control strategies according to the frequency deviation. Finally, simulation results on an islanded microgrid validate the effectiveness of the proposed strategies. For instance, compared with active power reserve control, the proposed switching-based coordinated control can reduce the maximum frequency deviation by 32.2 % and 14.5 % in large load increase and decrease scenarios, respectively.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信