Customized open source renewable energy models validated through PHIL lab experiments

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Fernando Fachini, Hao Chang, Tetiana Bogodorova, Luigi Vanfretti
{"title":"Customized open source renewable energy models validated through PHIL lab experiments","authors":"Fernando Fachini,&nbsp;Hao Chang,&nbsp;Tetiana Bogodorova,&nbsp;Luigi Vanfretti","doi":"10.1016/j.renene.2025.122627","DOIUrl":null,"url":null,"abstract":"<div><div>Energy models for power systems require ongoing updates to reflect advancements in equipment technology and the increasing complexity of power electronic devices. This study utilizes a Power Hardware-in-the-Loop (PHIL) experimental setup to validate custom photovoltaic (PV) inverter models, aiming to enhance and expedite the development of advanced renewable energy models. The research compares the performance of a physical inverter with generic Renewable Energy Source (RES) models recommended by the Western Electricity Coordinating Council (WECC). As inverter-based renewable energy sources become more prevalent in modern electrical grids, it is crucial that dynamic models accurately represent their real-world behavior. Accurate models improve our understanding of these energy resources and their interactions with the grid. The proposed model enhancements are designed to better reflect real inverter performance, based on insights from PHIL experiments. These models are developed using the open source Modelica language and the OpenIPSL Modelica Library, allowing integration across various simulation tools without re-implementation. The paper concludes with a thorough assessment, comparing the enhanced models with PHIL experiments on a real PV inverter in a controlled laboratory setting. The study provides the enhanced WECC RES models and validation data as open source resources, facilitating further research and development.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"244 ","pages":"Article 122627"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125002897","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Energy models for power systems require ongoing updates to reflect advancements in equipment technology and the increasing complexity of power electronic devices. This study utilizes a Power Hardware-in-the-Loop (PHIL) experimental setup to validate custom photovoltaic (PV) inverter models, aiming to enhance and expedite the development of advanced renewable energy models. The research compares the performance of a physical inverter with generic Renewable Energy Source (RES) models recommended by the Western Electricity Coordinating Council (WECC). As inverter-based renewable energy sources become more prevalent in modern electrical grids, it is crucial that dynamic models accurately represent their real-world behavior. Accurate models improve our understanding of these energy resources and their interactions with the grid. The proposed model enhancements are designed to better reflect real inverter performance, based on insights from PHIL experiments. These models are developed using the open source Modelica language and the OpenIPSL Modelica Library, allowing integration across various simulation tools without re-implementation. The paper concludes with a thorough assessment, comparing the enhanced models with PHIL experiments on a real PV inverter in a controlled laboratory setting. The study provides the enhanced WECC RES models and validation data as open source resources, facilitating further research and development.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信