Soe Htet Aung , Shabbir H. Gheewala , Ekbordin Winijkul , Sirima Panyametheekul , Trakarn Prapaspongsa
{"title":"Environmental impacts and costs of ozone formation in Bangkok Metropolitan Region","authors":"Soe Htet Aung , Shabbir H. Gheewala , Ekbordin Winijkul , Sirima Panyametheekul , Trakarn Prapaspongsa","doi":"10.1016/j.apr.2025.102450","DOIUrl":null,"url":null,"abstract":"<div><div>Ozone formation is an important environmental factor causing impacts on human health and ecosystem. Previous research relating to ozone formation often had limited scopes on direct emissions or focused on limited sectors of cities. This study aimed to quantify environmental impacts and costs due to ozone formation caused by energy generation, industry, agriculture, residential and commercial sectors, transport, fugitive gas emissions and waste treatment in the Bangkok Metropolitan Region (BMR) in 2022. The assessment applied spatially differentiated life cycle assessment framework, quantifying impacts on human health and ecosystem using local and global factors for on-site and supply chain emissions. The baseline situation in 2022 revealed that total emissions (on-site and supply chain) were 3.97E+05 tonnes of NO<sub>x</sub> and 1.15E+05 tonnes of NMVOC. NO<sub>x</sub> and the transport sector were the main stressor and hotspot causing impacts and costs of ozone formation in BMR. Total impact scores (on-site and supply chain) were 4.39E+02 disability-adjusted life year (human health impact) and 3.50E+01 species.year (ecosystem damage). The impacts were mainly contributed by on-site activities in BMR costing 6 billion Thai Baht. Scenarios were developed focusing primarily on the on-road transport since it was the hotspot causing health impacts and ecosystem damage. The scenarios indicated that upgrading fuel technology from diesel to compressed natural gas and modification of vehicles from diesel to electric were found to be very effective for overall reduction by more than 50% on average for health impacts and by more than 40% on average for ecosystem damage.</div></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"16 5","pages":"Article 102450"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104225000522","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ozone formation is an important environmental factor causing impacts on human health and ecosystem. Previous research relating to ozone formation often had limited scopes on direct emissions or focused on limited sectors of cities. This study aimed to quantify environmental impacts and costs due to ozone formation caused by energy generation, industry, agriculture, residential and commercial sectors, transport, fugitive gas emissions and waste treatment in the Bangkok Metropolitan Region (BMR) in 2022. The assessment applied spatially differentiated life cycle assessment framework, quantifying impacts on human health and ecosystem using local and global factors for on-site and supply chain emissions. The baseline situation in 2022 revealed that total emissions (on-site and supply chain) were 3.97E+05 tonnes of NOx and 1.15E+05 tonnes of NMVOC. NOx and the transport sector were the main stressor and hotspot causing impacts and costs of ozone formation in BMR. Total impact scores (on-site and supply chain) were 4.39E+02 disability-adjusted life year (human health impact) and 3.50E+01 species.year (ecosystem damage). The impacts were mainly contributed by on-site activities in BMR costing 6 billion Thai Baht. Scenarios were developed focusing primarily on the on-road transport since it was the hotspot causing health impacts and ecosystem damage. The scenarios indicated that upgrading fuel technology from diesel to compressed natural gas and modification of vehicles from diesel to electric were found to be very effective for overall reduction by more than 50% on average for health impacts and by more than 40% on average for ecosystem damage.
期刊介绍:
Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.