Ryland G. Wala , Mathew P. Polek , Sivanandan S. Harilal , R. Jason Jones , Mark C. Phillips
{"title":"Characterization of electron density and ionization of a uranium laser produced plasma using laser absorption spectroscopy","authors":"Ryland G. Wala , Mathew P. Polek , Sivanandan S. Harilal , R. Jason Jones , Mark C. Phillips","doi":"10.1016/j.sab.2025.107142","DOIUrl":null,"url":null,"abstract":"<div><div>High-resolution tunable laser spectroscopy is used to measure time-resolved absorption spectra for ten neutral uranium transitions and six singly-ionized transitions in a laser produced plasma. Spectral lineshapes are analyzed to determine temporal variations in ion and neutral total column densities, excitation temperatures, kinetic temperatures, and collisional broadening effects as the plasma cools. Comparison of ion to neutral column densities shows a ratio greater than 10 at times <span><math><mo><</mo></math></span>15 μs after plasma onset, with the ratio not reaching unity until 50 μs. Spectral lineshapes are analyzed to separate Stark and van der Waals contributions to collisional broadening, from which electron densities are determined and found to decrease from <span><math><mo>∼</mo></math></span>10<sup>15</sup>–10<sup>13</sup> cm<sup>−3</sup> over times from 4–25 μs. Using absorption spectroscopy to determine charge properties and electron density over these time scales and at low magnitudes provides valuable insight into plasma properties not obtainable using conventional emission spectroscopy. Comparisons between ion and neutral densities, excitation temperatures, kinetic temperatures, and electron densities could indicate potential deviations from local thermodynamic equilibrium and Saha ionization predictions.</div></div>","PeriodicalId":21890,"journal":{"name":"Spectrochimica Acta Part B: Atomic Spectroscopy","volume":"227 ","pages":"Article 107142"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part B: Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0584854725000278","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
High-resolution tunable laser spectroscopy is used to measure time-resolved absorption spectra for ten neutral uranium transitions and six singly-ionized transitions in a laser produced plasma. Spectral lineshapes are analyzed to determine temporal variations in ion and neutral total column densities, excitation temperatures, kinetic temperatures, and collisional broadening effects as the plasma cools. Comparison of ion to neutral column densities shows a ratio greater than 10 at times 15 μs after plasma onset, with the ratio not reaching unity until 50 μs. Spectral lineshapes are analyzed to separate Stark and van der Waals contributions to collisional broadening, from which electron densities are determined and found to decrease from 1015–1013 cm−3 over times from 4–25 μs. Using absorption spectroscopy to determine charge properties and electron density over these time scales and at low magnitudes provides valuable insight into plasma properties not obtainable using conventional emission spectroscopy. Comparisons between ion and neutral densities, excitation temperatures, kinetic temperatures, and electron densities could indicate potential deviations from local thermodynamic equilibrium and Saha ionization predictions.
期刊介绍:
Spectrochimica Acta Part B: Atomic Spectroscopy, is intended for the rapid publication of both original work and reviews in the following fields:
Atomic Emission (AES), Atomic Absorption (AAS) and Atomic Fluorescence (AFS) spectroscopy;
Mass Spectrometry (MS) for inorganic analysis covering Spark Source (SS-MS), Inductively Coupled Plasma (ICP-MS), Glow Discharge (GD-MS), and Secondary Ion Mass Spectrometry (SIMS).
Laser induced atomic spectroscopy for inorganic analysis, including non-linear optical laser spectroscopy, covering Laser Enhanced Ionization (LEI), Laser Induced Fluorescence (LIF), Resonance Ionization Spectroscopy (RIS) and Resonance Ionization Mass Spectrometry (RIMS); Laser Induced Breakdown Spectroscopy (LIBS); Cavity Ringdown Spectroscopy (CRDS), Laser Ablation Inductively Coupled Plasma Atomic Emission Spectroscopy (LA-ICP-AES) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS).
X-ray spectrometry, X-ray Optics and Microanalysis, including X-ray fluorescence spectrometry (XRF) and related techniques, in particular Total-reflection X-ray Fluorescence Spectrometry (TXRF), and Synchrotron Radiation-excited Total reflection XRF (SR-TXRF).
Manuscripts dealing with (i) fundamentals, (ii) methodology development, (iii)instrumentation, and (iv) applications, can be submitted for publication.