Exploring the antibiotic potential of copper carbonate nanoparticles, wound healing, and glucose-lowering effects in diabetic albino mice

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Muhammad Waseem Aslam , Sabeen Sabri , Ali Umar , Muhammad Saleem Khan , Muhammad Yasir Abbas , Misbah Ullah Khan , Muhammad Wajid
{"title":"Exploring the antibiotic potential of copper carbonate nanoparticles, wound healing, and glucose-lowering effects in diabetic albino mice","authors":"Muhammad Waseem Aslam ,&nbsp;Sabeen Sabri ,&nbsp;Ali Umar ,&nbsp;Muhammad Saleem Khan ,&nbsp;Muhammad Yasir Abbas ,&nbsp;Misbah Ullah Khan ,&nbsp;Muhammad Wajid","doi":"10.1016/j.bbrc.2025.151527","DOIUrl":null,"url":null,"abstract":"<div><div>Bio-Nanoscience is an emerging field that integrates nanotechnology with biological systems to revolutionize medicine, agriculture, and environmental sustainability through innovative and targeted solutions. The aim of this study was to synthesize copper carbonate nanoparticles and to investigate their antibacterial, wound healing, and glucose-lowering properties. Nanoparticles (NPs) were Synthesized through chemical reduction method and confirmed by using SEM, XRD, and FTIR. Characterization revealed that the nanoparticles had an average size of 55 ± 16 nm, exhibited a crystalline structure, and were free of impurities. Antibacterial tests demonstrated enhanced inhibition zones for <em>Pseudomonas</em> spp., <em>S. aureus</em>, and other bacterial strains, with the largest zone of inhibition observed at 12 mg/ml, measuring 18.5 ± 1.05 mm for <em>Pseudomonas</em> spp. In wound healing activity in diabetic mice observations revealed a complete wound closure in NPs treated mice by day 14 as compared to the control group (96.10 % wound closure). Nanoparticle administration (oral) also significantly reduced glucose levels in diabetic mice after 15 days in the experimental period, whereas fasting glucose levels reduced from 398.00 ± 6.16 to 116.67 ± 12.47 mg/dl. The docking studies of copper carbonate nanoparticles (NPs) with proteins involved in wound healing, including Antileukoproteinase (−2.7 kcal/mol), Casein (−2.5 kcal/mol), Collagen (−2.9 kcal/mol), Lysozyme (−2.8 kcal/mol), and Phospholipase (−3.9 kcal/mol), revealed significant binding affinities, suggesting potential applications in enhancing wound healing processes. Therefore, the copper carbonate nanoparticles demonstrate strong antibacterial properties and show promising effects on wound healing, along with blood glucose-lowering activity. These findings suggest their potential in biomedical applications, particularly for treating diabetes and bacterial infections.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"754 ","pages":"Article 151527"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25002414","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bio-Nanoscience is an emerging field that integrates nanotechnology with biological systems to revolutionize medicine, agriculture, and environmental sustainability through innovative and targeted solutions. The aim of this study was to synthesize copper carbonate nanoparticles and to investigate their antibacterial, wound healing, and glucose-lowering properties. Nanoparticles (NPs) were Synthesized through chemical reduction method and confirmed by using SEM, XRD, and FTIR. Characterization revealed that the nanoparticles had an average size of 55 ± 16 nm, exhibited a crystalline structure, and were free of impurities. Antibacterial tests demonstrated enhanced inhibition zones for Pseudomonas spp., S. aureus, and other bacterial strains, with the largest zone of inhibition observed at 12 mg/ml, measuring 18.5 ± 1.05 mm for Pseudomonas spp. In wound healing activity in diabetic mice observations revealed a complete wound closure in NPs treated mice by day 14 as compared to the control group (96.10 % wound closure). Nanoparticle administration (oral) also significantly reduced glucose levels in diabetic mice after 15 days in the experimental period, whereas fasting glucose levels reduced from 398.00 ± 6.16 to 116.67 ± 12.47 mg/dl. The docking studies of copper carbonate nanoparticles (NPs) with proteins involved in wound healing, including Antileukoproteinase (−2.7 kcal/mol), Casein (−2.5 kcal/mol), Collagen (−2.9 kcal/mol), Lysozyme (−2.8 kcal/mol), and Phospholipase (−3.9 kcal/mol), revealed significant binding affinities, suggesting potential applications in enhancing wound healing processes. Therefore, the copper carbonate nanoparticles demonstrate strong antibacterial properties and show promising effects on wound healing, along with blood glucose-lowering activity. These findings suggest their potential in biomedical applications, particularly for treating diabetes and bacterial infections.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信