Skills or degree? The rise of skill-based hiring for AI and green jobs

IF 12.9 1区 管理学 Q1 BUSINESS
Matthew Bone , Eugenia González Ehlinger , Fabian Stephany
{"title":"Skills or degree? The rise of skill-based hiring for AI and green jobs","authors":"Matthew Bone ,&nbsp;Eugenia González Ehlinger ,&nbsp;Fabian Stephany","doi":"10.1016/j.techfore.2025.124042","DOIUrl":null,"url":null,"abstract":"<div><div>Emerging professions in fields like Artificial Intelligence (AI) and sustainability (green jobs) are experiencing labour shortages as industry demand outpaces labour supply. In this context, our study aims to understand whether employers have begun focusing more on individual skills rather than formal qualifications in their recruitment processes. We analysed a large time-series dataset of approximately eleven million online job vacancies in the UK from 2018 to mid-2024, drawing on diverse literature on technological change and labour market signalling. Our findings provide evidence that employers have initiated “skill-based hiring” for AI roles, adopting more flexible hiring practices to expand the available talent pool. From 2018 to 2023, demand for AI roles grew by 21 % as a proportion of all postings (and accelerated into 2024). Simultaneously, mentions of university education requirements for AI roles declined by 15 %. Our regression analysis shows that university degrees have a significantly lower wage premium for both AI and green roles. In contrast, AI skills command a wage premium of 23 %, exceeding the value of degrees up until the PhD-level (33 %). In occupations with high demand for AI skills, the premium for skills is high, and the reward for degrees is relatively low. We recommend leveraging alternative skill-building formats such as apprenticeships, on-the-job training, MOOCs, vocational education and training, micro-certificates, and online bootcamps to fully utilise human capital and address talent shortages.</div></div>","PeriodicalId":48454,"journal":{"name":"Technological Forecasting and Social Change","volume":"214 ","pages":"Article 124042"},"PeriodicalIF":12.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technological Forecasting and Social Change","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040162525000733","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging professions in fields like Artificial Intelligence (AI) and sustainability (green jobs) are experiencing labour shortages as industry demand outpaces labour supply. In this context, our study aims to understand whether employers have begun focusing more on individual skills rather than formal qualifications in their recruitment processes. We analysed a large time-series dataset of approximately eleven million online job vacancies in the UK from 2018 to mid-2024, drawing on diverse literature on technological change and labour market signalling. Our findings provide evidence that employers have initiated “skill-based hiring” for AI roles, adopting more flexible hiring practices to expand the available talent pool. From 2018 to 2023, demand for AI roles grew by 21 % as a proportion of all postings (and accelerated into 2024). Simultaneously, mentions of university education requirements for AI roles declined by 15 %. Our regression analysis shows that university degrees have a significantly lower wage premium for both AI and green roles. In contrast, AI skills command a wage premium of 23 %, exceeding the value of degrees up until the PhD-level (33 %). In occupations with high demand for AI skills, the premium for skills is high, and the reward for degrees is relatively low. We recommend leveraging alternative skill-building formats such as apprenticeships, on-the-job training, MOOCs, vocational education and training, micro-certificates, and online bootcamps to fully utilise human capital and address talent shortages.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
21.30
自引率
10.80%
发文量
813
期刊介绍: Technological Forecasting and Social Change is a prominent platform for individuals engaged in the methodology and application of technological forecasting and future studies as planning tools, exploring the interconnectedness of social, environmental, and technological factors. In addition to serving as a key forum for these discussions, we offer numerous benefits for authors, including complimentary PDFs, a generous copyright policy, exclusive discounts on Elsevier publications, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信