Bram Jacobs , Ine Van Nieuwenhove , Sander Driesen , Pablo Reyes , Dagmar R. D’hooge , Geert-Jan Graulus , Katrien V. Bernaerts , An Verberckmoes
{"title":"Bio-polyol chemical design for self-healing boronate ester gels by green oxyalkylation of organosolv lignin","authors":"Bram Jacobs , Ine Van Nieuwenhove , Sander Driesen , Pablo Reyes , Dagmar R. D’hooge , Geert-Jan Graulus , Katrien V. Bernaerts , An Verberckmoes","doi":"10.1016/j.eurpolymj.2025.113846","DOIUrl":null,"url":null,"abstract":"<div><div>Lignin, the most abundant aromatic biopolymer, has a high potential as an alternative to fossil resources in the chemical industry. However, the non-uniformity of lignin is currently a drawback for high-end applications. In this work, glycerol carbonate being a green and safe cyclic carbonate was therefore applied in the oxyalkylation of organosolv lignin (weight average molecular weight of ≈ 8,300 g mol<sup>−1</sup>; aliphatic OH content of ca. 2.61 mmol g<sup>−1</sup>) to obtain a lignin-based polyol with solely aliphatic OH functionalities. The catalyst type, reaction temperature and time and additional solvents were evaluated in the oxyalkylation with optimal settings using K<sub>2</sub>CO<sub>3,</sub> 175 °C, 30 min reaction time without any additional solvent to make a modified lignin with a weight average molecular weight of ca. 15,000 g mol<sup>−1</sup> and an aliphatic OH content of ca. 4.59 mmol g<sup>−1</sup>. To support mechanistic understanding it is shown that the carboxylic acid and phenolic hydroxyl functionalities are converted completely into 1,2-diols, while native aliphatic OH functionalities take at most slightly part in the modification reaction. Furthermore, upon the formation of vicinal diols, the functionalities partially react with glycerol carbonate by an internal transesterification into cyclic carbonate functionalities, this undesirable reaction being more dominant at lower temperatures. Notably, the performance of the oxyalkylation strategy is sufficient to crosslink the modified lignin with benzene-1,4-diboronic acid into a gel-like material with identical shear storage and loss moduli before destruction and immediately after destruction (for the lowest amount of crosslinker added = 1:1.15 diol/boronic acid functionalities molar ratio).</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"228 ","pages":"Article 113846"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001430572500134X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Lignin, the most abundant aromatic biopolymer, has a high potential as an alternative to fossil resources in the chemical industry. However, the non-uniformity of lignin is currently a drawback for high-end applications. In this work, glycerol carbonate being a green and safe cyclic carbonate was therefore applied in the oxyalkylation of organosolv lignin (weight average molecular weight of ≈ 8,300 g mol−1; aliphatic OH content of ca. 2.61 mmol g−1) to obtain a lignin-based polyol with solely aliphatic OH functionalities. The catalyst type, reaction temperature and time and additional solvents were evaluated in the oxyalkylation with optimal settings using K2CO3, 175 °C, 30 min reaction time without any additional solvent to make a modified lignin with a weight average molecular weight of ca. 15,000 g mol−1 and an aliphatic OH content of ca. 4.59 mmol g−1. To support mechanistic understanding it is shown that the carboxylic acid and phenolic hydroxyl functionalities are converted completely into 1,2-diols, while native aliphatic OH functionalities take at most slightly part in the modification reaction. Furthermore, upon the formation of vicinal diols, the functionalities partially react with glycerol carbonate by an internal transesterification into cyclic carbonate functionalities, this undesirable reaction being more dominant at lower temperatures. Notably, the performance of the oxyalkylation strategy is sufficient to crosslink the modified lignin with benzene-1,4-diboronic acid into a gel-like material with identical shear storage and loss moduli before destruction and immediately after destruction (for the lowest amount of crosslinker added = 1:1.15 diol/boronic acid functionalities molar ratio).
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.