Ultrafast microwave-assisted green synthesis of nitrogen-doped carbon dots as turn-off fluorescent nanosensors for determination of the anticancer nintedanib: Monitoring of environmental water samples

IF 4.1 Q1 CHEMISTRY, ANALYTICAL
Galal Magdy , Asmaa Kamal El-Deen , Aya Saad Radwan , Fathalla Belal , Heba Elmansi
{"title":"Ultrafast microwave-assisted green synthesis of nitrogen-doped carbon dots as turn-off fluorescent nanosensors for determination of the anticancer nintedanib: Monitoring of environmental water samples","authors":"Galal Magdy ,&nbsp;Asmaa Kamal El-Deen ,&nbsp;Aya Saad Radwan ,&nbsp;Fathalla Belal ,&nbsp;Heba Elmansi","doi":"10.1016/j.talo.2025.100423","DOIUrl":null,"url":null,"abstract":"<div><div>This study unveils a swift and sustainable approach for the synthesis of nitrogen-doped carbon quantum dots (N-CQDs) from radish leaves and urea, conducted by microwave assistance within only 50 seconds, showcasing remarkable efficiency. Comprehensive characterization confirmed the distinctive optical properties of the N-CQDs, with a quantum yield of 19.76 %, highlighting their potential as fluorescent nanosensors. The N-CQDs exhibit turn-off fluorescence properties for sensing the anticancer drug nintedanib in different environmental water samples, including hospital discharge water, sewage water, tap water, and river water. The method exhibits excellent linearity within a concentration range of 1.0–20.0 µg/mL, with a correlation coefficient exceeding 0.999 and a low detection limit down to 0.14 μg/mL. The assay of nintedanib in various environmental water samples demonstrated the applicability and sensitivity of the N-CQDs as a detection platform. The ComplexMoGAPI, AGREE, and Green Certificate-modified Eco-Scale metrics demonstrated the method's exceptional eco-friendliness and sustainability. Additionally, the BAGI tool was employed to assess the method's economic viability, applicability, and practicality. All the tools demonstrated the sustainability and feasibility of the developed approach, as well as its appropriateness for the routine analysis of the examined drug. This work is considered the first spectrofluorimetric approach for the analysis of nintedanib. This innovative study also paves the way for eco-friendly nanosensors with diverse applications in environmental monitoring.</div></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"11 ","pages":"Article 100423"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831925000268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study unveils a swift and sustainable approach for the synthesis of nitrogen-doped carbon quantum dots (N-CQDs) from radish leaves and urea, conducted by microwave assistance within only 50 seconds, showcasing remarkable efficiency. Comprehensive characterization confirmed the distinctive optical properties of the N-CQDs, with a quantum yield of 19.76 %, highlighting their potential as fluorescent nanosensors. The N-CQDs exhibit turn-off fluorescence properties for sensing the anticancer drug nintedanib in different environmental water samples, including hospital discharge water, sewage water, tap water, and river water. The method exhibits excellent linearity within a concentration range of 1.0–20.0 µg/mL, with a correlation coefficient exceeding 0.999 and a low detection limit down to 0.14 μg/mL. The assay of nintedanib in various environmental water samples demonstrated the applicability and sensitivity of the N-CQDs as a detection platform. The ComplexMoGAPI, AGREE, and Green Certificate-modified Eco-Scale metrics demonstrated the method's exceptional eco-friendliness and sustainability. Additionally, the BAGI tool was employed to assess the method's economic viability, applicability, and practicality. All the tools demonstrated the sustainability and feasibility of the developed approach, as well as its appropriateness for the routine analysis of the examined drug. This work is considered the first spectrofluorimetric approach for the analysis of nintedanib. This innovative study also paves the way for eco-friendly nanosensors with diverse applications in environmental monitoring.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Talanta Open
Talanta Open Chemistry-Analytical Chemistry
CiteScore
5.20
自引率
0.00%
发文量
86
审稿时长
49 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信