Living joint prosthesis with in-situ tissue engineering for real-time and long-term osteoarticular reconstruction

IF 18 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Wei Sun , Hongwei Wu , Yiyang Yan , Xianzhu Zhang , Xudong Yao , Rui Li , Jingyi Zuo , Wenyue Li , Hongwei Ouyang
{"title":"Living joint prosthesis with in-situ tissue engineering for real-time and long-term osteoarticular reconstruction","authors":"Wei Sun ,&nbsp;Hongwei Wu ,&nbsp;Yiyang Yan ,&nbsp;Xianzhu Zhang ,&nbsp;Xudong Yao ,&nbsp;Rui Li ,&nbsp;Jingyi Zuo ,&nbsp;Wenyue Li ,&nbsp;Hongwei Ouyang","doi":"10.1016/j.bioactmat.2025.01.036","DOIUrl":null,"url":null,"abstract":"<div><div>The reconstruction of large osteoarticular defects caused by tumor resection or severe trauma remains a clinical challenge. Current metal prostheses exhibit a lack of osteo-chondrogenic functionality and demonstrate poor integration with host tissues. This often results in complications such as abnormal bone absorption and prosthetic loosening, which may necessitate secondary revisions. Here, we propose a paradigm-shifting “living prosthesis” strategy that combines a customized 3D-printed hollow titanium humeral prosthesis with engineered bone marrow condensations presenting bone morphogenetic protein-2 (BMP-2) and transforming growth factor–β3 (TGF-β3) from encapsulated silk fibroin hydrogels. This innovative approach promotes <em>in situ</em> endochondral defect regeneration of the entire humeral head while simultaneously providing immediate mechanical support. In a rabbit model of total humerus resection, the designed “living prosthesis” achieved weight, macroscopic and microscopic morphologies that were comparable to those of undamaged native joints at 2 months post-implantation, with organized osteochondral tissues were regenerated both around and within the prosthesis. Notably, the “living prosthesis” displayed significantly higher osteo-integration than the blank metal prosthesis did, as evidenced by a 3-fold increase in bone ingrowth and a 2-fold increase in mechanical pull-out strength. Furthermore, the \"living prosthesis\" restored joint cartilage function, with rabbits exhibiting normal gait and weight-bearing capacity. The successful regeneration of fully functional humeral head tissue from a single implanted prosthesis represents technical advance in designing bioactive bone prosthesis, with promising implications for treating extreme-large osteochondral defects.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"48 ","pages":"Pages 431-442"},"PeriodicalIF":18.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25000441","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The reconstruction of large osteoarticular defects caused by tumor resection or severe trauma remains a clinical challenge. Current metal prostheses exhibit a lack of osteo-chondrogenic functionality and demonstrate poor integration with host tissues. This often results in complications such as abnormal bone absorption and prosthetic loosening, which may necessitate secondary revisions. Here, we propose a paradigm-shifting “living prosthesis” strategy that combines a customized 3D-printed hollow titanium humeral prosthesis with engineered bone marrow condensations presenting bone morphogenetic protein-2 (BMP-2) and transforming growth factor–β3 (TGF-β3) from encapsulated silk fibroin hydrogels. This innovative approach promotes in situ endochondral defect regeneration of the entire humeral head while simultaneously providing immediate mechanical support. In a rabbit model of total humerus resection, the designed “living prosthesis” achieved weight, macroscopic and microscopic morphologies that were comparable to those of undamaged native joints at 2 months post-implantation, with organized osteochondral tissues were regenerated both around and within the prosthesis. Notably, the “living prosthesis” displayed significantly higher osteo-integration than the blank metal prosthesis did, as evidenced by a 3-fold increase in bone ingrowth and a 2-fold increase in mechanical pull-out strength. Furthermore, the "living prosthesis" restored joint cartilage function, with rabbits exhibiting normal gait and weight-bearing capacity. The successful regeneration of fully functional humeral head tissue from a single implanted prosthesis represents technical advance in designing bioactive bone prosthesis, with promising implications for treating extreme-large osteochondral defects.

Abstract Image

基于原位组织工程的活体关节假体用于实时和长期的骨关节重建
肿瘤切除或严重外伤引起的大骨关节缺损的重建仍然是一个临床难题。目前的金属假体缺乏成骨软骨功能,与宿主组织的整合能力差。这通常会导致并发症,如骨吸收异常和假体松动,这可能需要二次修复。在这里,我们提出了一种范式转换的“活体假体”策略,将定制的3d打印空心钛肱骨假体与工程化的骨髓凝聚相结合,这些骨髓凝聚含有骨形态发生蛋白-2 (BMP-2)和转化生长因子-β3 (TGF-β3)。这种创新的方法促进了整个肱骨头软骨内缺损的原位再生,同时提供了即时的机械支持。在兔肱骨全切除术模型中,设计的“活体假体”在植入后2个月的重量、宏观和微观形态与未受损的天然关节相当,假体周围和内部都有组织的骨软骨组织再生。值得注意的是,“活体假体”比空白金属假体表现出明显更高的骨整合,骨长入增加了3倍,机械拔出强度增加了2倍。此外,“活体假体”恢复了关节软骨功能,家兔表现出正常的步态和负重能力。单次植入假体成功再生全功能肱骨头组织代表了生物活性骨假体设计的技术进步,对治疗特大骨软骨缺损具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioactive Materials
Bioactive Materials Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍: Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms. The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms. The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials: Bioactive metals and alloys Bioactive inorganics: ceramics, glasses, and carbon-based materials Bioactive polymers and gels Bioactive materials derived from natural sources Bioactive composites These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信