Microenvironment-responsive coating for vascular stents to regulate coagulation-inflammation interaction and promote vascular recovery

IF 18 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Qiongjun Zhu , Zhezhe Chen , Dan'an Wang , Xiaolu Jiao , Yi Luan , Min Wang , Rifang Luo , Yunbing Wang , Guosheng Fu , Yanan Wang , Wenbin Zhang
{"title":"Microenvironment-responsive coating for vascular stents to regulate coagulation-inflammation interaction and promote vascular recovery","authors":"Qiongjun Zhu ,&nbsp;Zhezhe Chen ,&nbsp;Dan'an Wang ,&nbsp;Xiaolu Jiao ,&nbsp;Yi Luan ,&nbsp;Min Wang ,&nbsp;Rifang Luo ,&nbsp;Yunbing Wang ,&nbsp;Guosheng Fu ,&nbsp;Yanan Wang ,&nbsp;Wenbin Zhang","doi":"10.1016/j.bioactmat.2025.02.031","DOIUrl":null,"url":null,"abstract":"<div><div>Early coagulation-inflammation interaction and late in-stent restenosis undermine the efficacy of vascular stents after implantation. Targeting the interplay between inflammation and coagulation, and smooth muscle cell (SMC) proliferation, we presented a microenvironment-responsive coating designed to regulate tissue responses and vascular regeneration throughout the remodeling process. Coagulation was inhibited by incorporating anticoagulant tirofiban into the coating. MMP9-responsive nanoparticles embedded in the coating released salvianolic acid A to modulate inflammatory cell behavior and inhibit SMC dysfunction. By effectively interfering with clotting and inflammation, the coating suppressed platelet-fibrin interaction and formation of platelet-monocyte aggregates, thereby mitigating adverse effects on reendothelialization. Its ability to influence SMC proliferation and migration resulted in reduced intimal hyperplasia. Coated stents were shown to significantly regulate tissue regeneration, improve the vascular environment and even reduced the lipid content in the narrowed atherosclerotic vessels <em>in viv</em>o. This direct approach enhanced the vascular tissue regeneration after stent implantation, and offered promising insights for optimizing vascular stent design.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"48 ","pages":"Pages 443-457"},"PeriodicalIF":18.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25000878","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Early coagulation-inflammation interaction and late in-stent restenosis undermine the efficacy of vascular stents after implantation. Targeting the interplay between inflammation and coagulation, and smooth muscle cell (SMC) proliferation, we presented a microenvironment-responsive coating designed to regulate tissue responses and vascular regeneration throughout the remodeling process. Coagulation was inhibited by incorporating anticoagulant tirofiban into the coating. MMP9-responsive nanoparticles embedded in the coating released salvianolic acid A to modulate inflammatory cell behavior and inhibit SMC dysfunction. By effectively interfering with clotting and inflammation, the coating suppressed platelet-fibrin interaction and formation of platelet-monocyte aggregates, thereby mitigating adverse effects on reendothelialization. Its ability to influence SMC proliferation and migration resulted in reduced intimal hyperplasia. Coated stents were shown to significantly regulate tissue regeneration, improve the vascular environment and even reduced the lipid content in the narrowed atherosclerotic vessels in vivo. This direct approach enhanced the vascular tissue regeneration after stent implantation, and offered promising insights for optimizing vascular stent design.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioactive Materials
Bioactive Materials Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍: Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms. The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms. The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials: Bioactive metals and alloys Bioactive inorganics: ceramics, glasses, and carbon-based materials Bioactive polymers and gels Bioactive materials derived from natural sources Bioactive composites These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信