Directed Gas-Phase Formation of Azulene (C10H8): Unraveling the Bottom-Up Chemistry of Saddle-Shaped Aromatics

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhenghai Yang, Kazuumi Fujioka, Galiya R. Galimova, Iakov A. Medvedkov, Shane J. Goettl, Rui Sun*, Alexander M. Mebel* and Ralf I. Kaiser*, 
{"title":"Directed Gas-Phase Formation of Azulene (C10H8): Unraveling the Bottom-Up Chemistry of Saddle-Shaped Aromatics","authors":"Zhenghai Yang,&nbsp;Kazuumi Fujioka,&nbsp;Galiya R. Galimova,&nbsp;Iakov A. Medvedkov,&nbsp;Shane J. Goettl,&nbsp;Rui Sun*,&nbsp;Alexander M. Mebel* and Ralf I. Kaiser*,&nbsp;","doi":"10.1021/acscentsci.4c0160610.1021/acscentsci.4c01606","DOIUrl":null,"url":null,"abstract":"<p >The azulene (C<sub>10</sub>H<sub>8</sub>) molecule, the simplest polycyclic aromatic hydrocarbon (PAH) carrying a fused seven- and five-membered ring, is regarded as a fundamental molecular building block of saddle-shaped carbonaceous nanostructures such as curved nanographenes in the interstellar medium. However, an understanding of the underlying gas-phase formation mechanisms of this nonbenzenoid 10π-Hückel aromatic molecule under low-temperature conditions is in its infancy. Here, by merging crossed molecular beam experiments with electronic structure calculations and molecular dynamics simulations, our investigations unravel an unconventional low-temperature, barrierless route to azulene via the reaction of the simplest organic radical, methylidyne (CH), with indene (C<sub>9</sub>H<sub>8</sub>) through ring expansion. This reaction might represent the initial step toward to the formation of saddle-shaped PAHs with seven-membered ring moieties in hydrocarbon-rich cold molecular clouds such as the Taurus Molecular Cloud-1 (TMC-1). These findings challenge conventional wisdom that molecular mass growth processes to nonplanar PAHs, especially those containing seven-membered rings, operate only at elevated pressure and high-temperature conditions, thus affording a versatile low-temperature route to contorted aromatics in our galaxy.</p><p >The azulene (C<sub>10</sub>H<sub>8</sub>) molecule, a fundamental molecular building block of saddle-shaped aromatics, is formed for the first time under single collision conditions.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 2","pages":"322–330 322–330"},"PeriodicalIF":12.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01606","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.4c01606","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The azulene (C10H8) molecule, the simplest polycyclic aromatic hydrocarbon (PAH) carrying a fused seven- and five-membered ring, is regarded as a fundamental molecular building block of saddle-shaped carbonaceous nanostructures such as curved nanographenes in the interstellar medium. However, an understanding of the underlying gas-phase formation mechanisms of this nonbenzenoid 10π-Hückel aromatic molecule under low-temperature conditions is in its infancy. Here, by merging crossed molecular beam experiments with electronic structure calculations and molecular dynamics simulations, our investigations unravel an unconventional low-temperature, barrierless route to azulene via the reaction of the simplest organic radical, methylidyne (CH), with indene (C9H8) through ring expansion. This reaction might represent the initial step toward to the formation of saddle-shaped PAHs with seven-membered ring moieties in hydrocarbon-rich cold molecular clouds such as the Taurus Molecular Cloud-1 (TMC-1). These findings challenge conventional wisdom that molecular mass growth processes to nonplanar PAHs, especially those containing seven-membered rings, operate only at elevated pressure and high-temperature conditions, thus affording a versatile low-temperature route to contorted aromatics in our galaxy.

The azulene (C10H8) molecule, a fundamental molecular building block of saddle-shaped aromatics, is formed for the first time under single collision conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信