Screw-Dislocation-Driven Growth of 2D Perovskite Spiral Microplates

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Willa Mihalyi-Koch, Lianna Dang, Katherine A. Parrish, Yibo Huang, Dongxu Pan, Chris R. Roy, Jeffrey A. Bartz, Yongping Fu, John C. Wright, Randall H. Goldsmith and Song Jin*, 
{"title":"Screw-Dislocation-Driven Growth of 2D Perovskite Spiral Microplates","authors":"Willa Mihalyi-Koch,&nbsp;Lianna Dang,&nbsp;Katherine A. Parrish,&nbsp;Yibo Huang,&nbsp;Dongxu Pan,&nbsp;Chris R. Roy,&nbsp;Jeffrey A. Bartz,&nbsp;Yongping Fu,&nbsp;John C. Wright,&nbsp;Randall H. Goldsmith and Song Jin*,&nbsp;","doi":"10.1021/acs.nanolett.5c0027310.1021/acs.nanolett.5c00273","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional (2D) organic–inorganic halide perovskites are solution-processable semiconductors that are promising for optoelectronic applications. Understanding crystallization mechanisms to achieve control over nanostructures is important for optimizing desired properties. Here we introduce a versatile strategy to synthesize spiral microplates of diverse 2D perovskites at the air–water interface through screw-dislocation-driven growth. Spirals of 11 2D perovskite compositions (LA)<sub>2</sub>(A)<sub><i>n</i>−1</sub>Pb<sub><i>n</i></sub>X<sub>3<i>n</i>+1</sub> with different spacer (LA) cations, A-cations, halide (X) anions, and <i>n</i>-number can be grown. They typically consist of single- or few-layer perovskite step heights but exhibit stacking complexity when multiple dislocations interact. The spiral microplates exhibit the characteristic optical properties (photoluminescence and second-harmonic generation) of the underlying 2D perovskites. Fluorescence-detected circular dichroism imaging shows that the chirality of the spiral center does not translate to the observed chiroptical properties of the microplate, consistent with the length scale of the chiral distortion. This solution growth of perovskite spirals diversifies the perovskite microstructures for optoelectronics and other applications.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 8","pages":"3367–3374 3367–3374"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c00273","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) organic–inorganic halide perovskites are solution-processable semiconductors that are promising for optoelectronic applications. Understanding crystallization mechanisms to achieve control over nanostructures is important for optimizing desired properties. Here we introduce a versatile strategy to synthesize spiral microplates of diverse 2D perovskites at the air–water interface through screw-dislocation-driven growth. Spirals of 11 2D perovskite compositions (LA)2(A)n−1PbnX3n+1 with different spacer (LA) cations, A-cations, halide (X) anions, and n-number can be grown. They typically consist of single- or few-layer perovskite step heights but exhibit stacking complexity when multiple dislocations interact. The spiral microplates exhibit the characteristic optical properties (photoluminescence and second-harmonic generation) of the underlying 2D perovskites. Fluorescence-detected circular dichroism imaging shows that the chirality of the spiral center does not translate to the observed chiroptical properties of the microplate, consistent with the length scale of the chiral distortion. This solution growth of perovskite spirals diversifies the perovskite microstructures for optoelectronics and other applications.

Abstract Image

螺旋位错驱动的二维钙钛矿螺旋微孔板生长
二维(2D)有机-无机卤化物钙钛矿是一种可溶液加工的半导体,在光电应用中具有广阔的前景。了解结晶机制以实现对纳米结构的控制对于优化所需性能非常重要。本文介绍了一种通过螺旋位错驱动生长在空气-水界面合成多种二维钙钛矿螺旋微板的通用策略。用不同的间隔离子(LA)阳离子、A-阳离子、卤化物(X)阴离子和n-数,可以生长出11种二维钙钛矿组合物(LA)2(A)n−1PbnX3n+1的螺旋。它们通常由单层或几层钙钛矿台阶高度组成,但当多个位错相互作用时表现出堆叠复杂性。螺旋微板表现出底层二维钙钛矿特有的光学特性(光致发光和二次谐波产生)。荧光检测的圆二色性成像表明,螺旋中心的手性不转化为观察到的微孔板的手性,与手性扭曲的长度尺度一致。这种钙钛矿螺旋的溶液生长使钙钛矿微结构多样化,可用于光电子学和其他应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信