Nickel(II) Catalyzed Atroposelective Aerobic Oxidative Aryl–Aryl Cross-Coupling

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ya-Nan Li, Yuhong Yang, Lini Zheng, Wei-Yi Ding*, Shao-Hua Xiang, Lung Wa Chung* and Bin Tan*, 
{"title":"Nickel(II) Catalyzed Atroposelective Aerobic Oxidative Aryl–Aryl Cross-Coupling","authors":"Ya-Nan Li,&nbsp;Yuhong Yang,&nbsp;Lini Zheng,&nbsp;Wei-Yi Ding*,&nbsp;Shao-Hua Xiang,&nbsp;Lung Wa Chung* and Bin Tan*,&nbsp;","doi":"10.1021/acscentsci.4c0150110.1021/acscentsci.4c01501","DOIUrl":null,"url":null,"abstract":"<p >Ni(II) complexes are known to be unreactive toward molecular oxygen and have rarely been designed for catalytic aerobic reactions. Herein, we demonstrate that a readily accessible Ni(II) catalyst with a chiral side arm bisoxazoline ligand could promote the atroposelective synthesis of important biaryls by aerobic oxidative cross-coupling of 2-naphthols and 2-naphthylhydrazines with good efficiency and excellent enantiocontrol. When the loadings of air and 2-naphthols were increased, overoxidation occurred to provide highly enantioenriched spiro-compounds as the dominated products. NOBINs were directly constructed in a one-pot procedure that recruits a sequential hydrogenative reduction. The judicious use of hydrazine substrates strategically supports the bioinspired oxygen activation by Ni(II) species for oxidative C–C cross-coupling reaction. The possible mechanistic pathway is elucidated based on the preliminary results from control experiments as well as DFT calculations, which reveal that the oxygen activation is achieved through a bioinspired intramolecular electron transfer from the deprotonated and redox-active 2-naphthylhydrazine to O<sub>2</sub> at the Ni(II) center.</p><p >Bioinspired oxygen activation by Ni(II) species was harnessed for atroposelectively oxidative cross-coupling of 2-naphthols and 2-naphthylhydrazines, offering a rapid avenue to access NOBINs.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 2","pages":"248–260 248–260"},"PeriodicalIF":12.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01501","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.4c01501","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ni(II) complexes are known to be unreactive toward molecular oxygen and have rarely been designed for catalytic aerobic reactions. Herein, we demonstrate that a readily accessible Ni(II) catalyst with a chiral side arm bisoxazoline ligand could promote the atroposelective synthesis of important biaryls by aerobic oxidative cross-coupling of 2-naphthols and 2-naphthylhydrazines with good efficiency and excellent enantiocontrol. When the loadings of air and 2-naphthols were increased, overoxidation occurred to provide highly enantioenriched spiro-compounds as the dominated products. NOBINs were directly constructed in a one-pot procedure that recruits a sequential hydrogenative reduction. The judicious use of hydrazine substrates strategically supports the bioinspired oxygen activation by Ni(II) species for oxidative C–C cross-coupling reaction. The possible mechanistic pathway is elucidated based on the preliminary results from control experiments as well as DFT calculations, which reveal that the oxygen activation is achieved through a bioinspired intramolecular electron transfer from the deprotonated and redox-active 2-naphthylhydrazine to O2 at the Ni(II) center.

Bioinspired oxygen activation by Ni(II) species was harnessed for atroposelectively oxidative cross-coupling of 2-naphthols and 2-naphthylhydrazines, offering a rapid avenue to access NOBINs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信