Direct (LC-)MS Identification of Regioisomers from C–H Functionalization by Partial Isotopic Labeling

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Christopher A. Sojdak, David A. Polefrone, Hriday M. Shah, Cassandra D. Vu, Brandon J. Orzolek, Pedro M. Jimenez Antenucci, Micah Valadez Bush and Marisa C. Kozlowski*, 
{"title":"Direct (LC-)MS Identification of Regioisomers from C–H Functionalization by Partial Isotopic Labeling","authors":"Christopher A. Sojdak,&nbsp;David A. Polefrone,&nbsp;Hriday M. Shah,&nbsp;Cassandra D. Vu,&nbsp;Brandon J. Orzolek,&nbsp;Pedro M. Jimenez Antenucci,&nbsp;Micah Valadez Bush and Marisa C. Kozlowski*,&nbsp;","doi":"10.1021/acscentsci.4c0176510.1021/acscentsci.4c01765","DOIUrl":null,"url":null,"abstract":"<p >C–H functionalization of complex substrates is highly enabling in total synthesis and in the development of late-stage drug candidates. Much work has been dedicated to developing new methods as well as predictive modeling to accelerate route scouting. However, workflows to identify regioisomeric products are arduous, typically requiring chromatographic separation and/or nuclear magnetic resonance spectroscopy analysis. In addition, most reports focus on major products or do not assign regioisomeric products, which biases predictive models constructed from such data. Herein, we present a novel approach to complex reaction analysis utilizing partial deuterium labels, which enables direct product identification via liquid chromatography–mass spectrometry. When combined with spectral deconvolution, the method generates product ratios while circumventing chromatography altogether. Competitive kinetic isotope effects can also be determined. The resultant data are expected to be useful in the construction of predictive models across several dimensions including reaction selectivity, the impact of structure on mechanism, and mass spectral ionization patterns and expedite the identification of drug metabolites.</p><p >Partial isotopic labels allow direct identification of regioisomers via their distinct isotopic distributions. Alternately, spectral deconvolution of unseparated mixtures delivers regioisomer ratios.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 2","pages":"272–278 272–278"},"PeriodicalIF":12.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01765","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.4c01765","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

C–H functionalization of complex substrates is highly enabling in total synthesis and in the development of late-stage drug candidates. Much work has been dedicated to developing new methods as well as predictive modeling to accelerate route scouting. However, workflows to identify regioisomeric products are arduous, typically requiring chromatographic separation and/or nuclear magnetic resonance spectroscopy analysis. In addition, most reports focus on major products or do not assign regioisomeric products, which biases predictive models constructed from such data. Herein, we present a novel approach to complex reaction analysis utilizing partial deuterium labels, which enables direct product identification via liquid chromatography–mass spectrometry. When combined with spectral deconvolution, the method generates product ratios while circumventing chromatography altogether. Competitive kinetic isotope effects can also be determined. The resultant data are expected to be useful in the construction of predictive models across several dimensions including reaction selectivity, the impact of structure on mechanism, and mass spectral ionization patterns and expedite the identification of drug metabolites.

Partial isotopic labels allow direct identification of regioisomers via their distinct isotopic distributions. Alternately, spectral deconvolution of unseparated mixtures delivers regioisomer ratios.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信