A thermal transfer-enhanced zinc anode for stable and high-energy-density zinc-ion batteries

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-02-25 DOI:10.1016/j.matt.2025.102013
Shaofei La, Yong Gao, Qinghe Cao, Jingzhu Chen, Abdelnaby M. Elshahawy, Yingyi Cui, Fan Bu, Salah A. Makhlouf, Pei Song Chee, Cao Guan
{"title":"A thermal transfer-enhanced zinc anode for stable and high-energy-density zinc-ion batteries","authors":"Shaofei La, Yong Gao, Qinghe Cao, Jingzhu Chen, Abdelnaby M. Elshahawy, Yingyi Cui, Fan Bu, Salah A. Makhlouf, Pei Song Chee, Cao Guan","doi":"10.1016/j.matt.2025.102013","DOIUrl":null,"url":null,"abstract":"Achieving a Zn anode with simultaneous excellent cycling stability and high Zn utilization rate still remains a huge challenge for practical rechargeable zinc-ion batteries. Here, thermal transfer-enhanced layers are coated on both sides of Zn foil, where the top layer enables uniform Zn<sup>2+</sup> flux and temperature distribution, and the bottom coating improves local heat diffusion and mechanical stability. With such dual thermal protection, thermodynamically driven dendrite growth and side reactions are effectively suppressed. The Zn anode can be stably cycled for 440 h at 5 mA cm<sup>−2</sup>/5 mAh cm<sup>−2</sup> (corresponding to a high Zn utilization rate of 85.5%), which is superior to previously reported results for protective layer-coated zinc anodes. A V<sub>2</sub>O<sub>3</sub>/N-doped carbon (NC)-based full cell exhibits stable performance for 200 cycles with a high specific energy density (174 Wh kg<sup>−1</sup>, based on the whole mass of electrodes) and high volumetric energy density (218 Wh L<sup>−1</sup>, based on the whole cell), which is promising for practical applications.","PeriodicalId":388,"journal":{"name":"Matter","volume":"14 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102013","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving a Zn anode with simultaneous excellent cycling stability and high Zn utilization rate still remains a huge challenge for practical rechargeable zinc-ion batteries. Here, thermal transfer-enhanced layers are coated on both sides of Zn foil, where the top layer enables uniform Zn2+ flux and temperature distribution, and the bottom coating improves local heat diffusion and mechanical stability. With such dual thermal protection, thermodynamically driven dendrite growth and side reactions are effectively suppressed. The Zn anode can be stably cycled for 440 h at 5 mA cm−2/5 mAh cm−2 (corresponding to a high Zn utilization rate of 85.5%), which is superior to previously reported results for protective layer-coated zinc anodes. A V2O3/N-doped carbon (NC)-based full cell exhibits stable performance for 200 cycles with a high specific energy density (174 Wh kg−1, based on the whole mass of electrodes) and high volumetric energy density (218 Wh L−1, based on the whole cell), which is promising for practical applications.

Abstract Image

一种用于稳定和高能量密度锌离子电池的热传递增强锌阳极
实现同时具有良好循环稳定性和高锌利用率的锌阳极仍然是实际可充电锌离子电池面临的巨大挑战。在锌箔的两侧涂覆热传递增强层,其中顶层涂层使Zn2+通量和温度分布均匀,底层涂层改善了局部热扩散和机械稳定性。有了这样的双重热保护,热力学驱动的枝晶生长和副反应被有效地抑制。锌阳极在5ma cm - 2/ 5mah cm - 2下可稳定循环440 h(相当于85.5%的高锌利用率),优于先前报道的保护层镀锌阳极的结果。V2O3/ n掺杂碳(NC)基全电池在200次循环中表现出稳定的性能,具有高比能密度(基于电极整体质量的174 Wh kg−1)和高体积能量密度(基于整个电池的218 Wh L−1),具有实际应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信