Kaixin Wan, Yurui Li, Guifen Sun, Teng Liu, Peng Wang, Chuizhou Meng, Yang Li
{"title":"Permeable Dual-Mode Pressure–Temperature Sensing Textile with Sweat Adsorption and Evaporation Capability","authors":"Kaixin Wan, Yurui Li, Guifen Sun, Teng Liu, Peng Wang, Chuizhou Meng, Yang Li","doi":"10.1021/acssensors.4c03193","DOIUrl":null,"url":null,"abstract":"Permeable electronics are promising in improving the wearing comfort but still fail in dealing with the sweating issue. Herein, we develop a flexible and breathable dual-mode pressure–temperature sensor with sweat adsorption and evaporation capability. The device is constructed on a bilayer thermoplastic polyurethane (TPU)/polyacrylonitrile (PAN) nanofiber mat through electrospinning, where the PAN nanofibers are hydrophilic for sweat adsorption, while the TPU nanofibers are hydrophobic to block sweat invasion into the sensing structure. The diffused sweat evaporates into moisture, which then passes through the internal fabric microchannels across the whole substrate, ensuring excellent permeability. Besides, the pressure sensing based on a planar intronic supercapacitor and the temperature sensing based on a serpentine resistor work with no crosstalk between the two. Practical applications of the developed sensing textile for continuous monitoring of wrist pulse beating and skin temperature with unique sweat absorption and evaporation capability for dry skin status are well demonstrated. This work will boost the development of next-generation permeable electronics for wearable healthcare management with extreme comfort.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"22 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03193","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Permeable electronics are promising in improving the wearing comfort but still fail in dealing with the sweating issue. Herein, we develop a flexible and breathable dual-mode pressure–temperature sensor with sweat adsorption and evaporation capability. The device is constructed on a bilayer thermoplastic polyurethane (TPU)/polyacrylonitrile (PAN) nanofiber mat through electrospinning, where the PAN nanofibers are hydrophilic for sweat adsorption, while the TPU nanofibers are hydrophobic to block sweat invasion into the sensing structure. The diffused sweat evaporates into moisture, which then passes through the internal fabric microchannels across the whole substrate, ensuring excellent permeability. Besides, the pressure sensing based on a planar intronic supercapacitor and the temperature sensing based on a serpentine resistor work with no crosstalk between the two. Practical applications of the developed sensing textile for continuous monitoring of wrist pulse beating and skin temperature with unique sweat absorption and evaporation capability for dry skin status are well demonstrated. This work will boost the development of next-generation permeable electronics for wearable healthcare management with extreme comfort.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.