20.0% Efficiency of Ternary Organic Solar Cells Enabled by A Novel Wide Band Gap Polymer Guest Donor

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Junkang Zhou, Xinjie Zhou, Lijun Tu, Siqi Wu, Xiaomin Xia, Hongge Jia, Xin Song, Yongqiang Shi
{"title":"20.0% Efficiency of Ternary Organic Solar Cells Enabled by A Novel Wide Band Gap Polymer Guest Donor","authors":"Junkang Zhou, Xinjie Zhou, Lijun Tu, Siqi Wu, Xiaomin Xia, Hongge Jia, Xin Song, Yongqiang Shi","doi":"10.1039/d4ee05848h","DOIUrl":null,"url":null,"abstract":"Ternary strategy has emerged as a promising approach to further improve the device performance of organic solar cells (OSCs). Herein, a novel wide bandgap polymer donor P(BTzE-BDT) was synthesized and incorporated into the PM6:BTP-eC9 system to fabricate ternary OSCs. P(BTzE-BDT) exhibits complementary absorption spectra and excellent compatibility with PM6, facilitating the fine-tuning of the photon harvesting and the morphology of the ternary blend films. This leads to a simultaneous increase in the short-circuit current density (JSC) and fill factor (FF). By promoting intensive molecular packing and reducing domain size, P(BTzE-BDT) optimizes the morphology, contributing to improved and well-balanced charge transport, suppressed carrier recombination, and efficient exciton dissociation. Consequently, a ternary OSCs with a 5% addition of P(BTzE-BDT) achieves a higher power conversion efficiency (PCE) of 20.0%, compared to 18.8% for the binary system. Furthermore, thick-film devices were fabricated to assess their commercialization potential, achieving a PCE of 18.2% with an active layer thickness of 300 nm, compared to 16.3% for the binary device. This comprehensive study underscores the potential of P(BTzE-BDT) as a promising guest molecule for optimizing morphology, which is crucial for achieving high efficiency in OSCs, thereby paving the way for practical commercial applications.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"31 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee05848h","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ternary strategy has emerged as a promising approach to further improve the device performance of organic solar cells (OSCs). Herein, a novel wide bandgap polymer donor P(BTzE-BDT) was synthesized and incorporated into the PM6:BTP-eC9 system to fabricate ternary OSCs. P(BTzE-BDT) exhibits complementary absorption spectra and excellent compatibility with PM6, facilitating the fine-tuning of the photon harvesting and the morphology of the ternary blend films. This leads to a simultaneous increase in the short-circuit current density (JSC) and fill factor (FF). By promoting intensive molecular packing and reducing domain size, P(BTzE-BDT) optimizes the morphology, contributing to improved and well-balanced charge transport, suppressed carrier recombination, and efficient exciton dissociation. Consequently, a ternary OSCs with a 5% addition of P(BTzE-BDT) achieves a higher power conversion efficiency (PCE) of 20.0%, compared to 18.8% for the binary system. Furthermore, thick-film devices were fabricated to assess their commercialization potential, achieving a PCE of 18.2% with an active layer thickness of 300 nm, compared to 16.3% for the binary device. This comprehensive study underscores the potential of P(BTzE-BDT) as a promising guest molecule for optimizing morphology, which is crucial for achieving high efficiency in OSCs, thereby paving the way for practical commercial applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信