Ultrafast electron transfer at the ZnIn2S4/MoS2 S-scheme interface for photocatalytic hydrogen evolution†

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-02-25 DOI:10.1039/D4NR05043F
Himanshu Bhatt, Mahammed Suleman Patel, Tanmay Goswami, Dharmendra K. Yadav, Atal Swathi Patra and Hirendra N. Ghosh
{"title":"Ultrafast electron transfer at the ZnIn2S4/MoS2 S-scheme interface for photocatalytic hydrogen evolution†","authors":"Himanshu Bhatt, Mahammed Suleman Patel, Tanmay Goswami, Dharmendra K. Yadav, Atal Swathi Patra and Hirendra N. Ghosh","doi":"10.1039/D4NR05043F","DOIUrl":null,"url":null,"abstract":"<p >The performance of any photocatalyst relies on its solar harvesting and charge separation characteristics. Fabricating the S-scheme heterostructure is a proficient approach for designing next-generation photocatalysts with improved redox capabilities. Here, we integrated ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> (ZIS) and MoS<small><sub>2</sub></small> nanosheets to develop a unique S-scheme heterostructure through an <em>in situ</em> hydrothermal technique. The designed ZIS/MoS<small><sub>2</sub></small> heterostructure showcased a 2.8 times higher photocatalytic H<small><sub>2</sub></small> evolution rate than pristine ZIS nanosheets. The steady-state optical measurements revealed enhanced visible light absorption and reduced charge recombination in the heterostructure. Transient absorption (TA) spectroscopy revealed the interfacial electron transfer from ZIS to MoS<small><sub>2</sub></small>. The X-ray photoelectron and electron/hole quenching TA spectroscopic measurements collectively confirmed the integration of both semiconductors in an S-scheme manner, facilitating enhanced H<small><sub>2</sub></small> production in the case of the heterostructure. This study highlights the importance of in-depth spectroscopic investigations in advancing the photocatalytic performance of S-scheme heterostructure-based photocatalysts.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 13","pages":" 7908-7916"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr05043f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of any photocatalyst relies on its solar harvesting and charge separation characteristics. Fabricating the S-scheme heterostructure is a proficient approach for designing next-generation photocatalysts with improved redox capabilities. Here, we integrated ZnIn2S4 (ZIS) and MoS2 nanosheets to develop a unique S-scheme heterostructure through an in situ hydrothermal technique. The designed ZIS/MoS2 heterostructure showcased a 2.8 times higher photocatalytic H2 evolution rate than pristine ZIS nanosheets. The steady-state optical measurements revealed enhanced visible light absorption and reduced charge recombination in the heterostructure. Transient absorption (TA) spectroscopy revealed the interfacial electron transfer from ZIS to MoS2. The X-ray photoelectron and electron/hole quenching TA spectroscopic measurements collectively confirmed the integration of both semiconductors in an S-scheme manner, facilitating enhanced H2 production in the case of the heterostructure. This study highlights the importance of in-depth spectroscopic investigations in advancing the photocatalytic performance of S-scheme heterostructure-based photocatalysts.

Abstract Image

ZnIn2S4/MoS2 S-Scheme界面光催化析氢的超快电子转移
任何光催化剂的性能都取决于它的太阳能收集和电荷分离特性。制备s型异质结构是设计下一代光催化剂提高氧化还原能力的有效途径。在这里,我们通过原位水热技术将ZnIn2S4 (ZIS)和MoS2纳米片集成在一起,形成了独特的S-scheme异质结构。设计的ZIS/MoS2异质结构的光催化析氢速率比原始ZIS纳米片高2.8倍。稳态光学测量表明,异质结构中可见光吸收增强,电荷复合减少。瞬态吸收光谱(TA)揭示了ZIS到MoS2的界面电子转移。x射线光电子和电子/空穴淬火TA光谱测量共同证实了这两种半导体以S-scheme的方式集成,促进了异质结构下H2的产生。该研究强调了深入的光谱研究对提高s型异质结构光催化剂的光催化性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信