Hossain Md Nayem, Masahiro Hori, Katsuhiko Nishiguchi, Yukinori Ono
{"title":"Electron thermometry for Si MOS inversion layer using proximity nano-transistor and its application to Joule-heating experiment","authors":"Hossain Md Nayem, Masahiro Hori, Katsuhiko Nishiguchi, Yukinori Ono","doi":"10.1063/5.0239500","DOIUrl":null,"url":null,"abstract":"A method for measuring the electron temperature in the inversion layer of Si metal-oxide-semiconductor structures is presented. This technique utilizes a nano-transistor as a thermometer, placed in close proximity to the inversion layer under investigation, enabling measurements of the electron temperature for values above approximately 10 K. When applied to Joule-heating experiments, this method reveals a notable discrepancy between the measurement results and predictions made by the conventional theory based on the deformation-potential coupling with low-energy acoustic phonons. Specifically, the injected-power dependence of the electron temperature is much weaker than expected. The results strongly suggest that another mechanism causing a significant electron energy loss plays a role.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"51 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0239500","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A method for measuring the electron temperature in the inversion layer of Si metal-oxide-semiconductor structures is presented. This technique utilizes a nano-transistor as a thermometer, placed in close proximity to the inversion layer under investigation, enabling measurements of the electron temperature for values above approximately 10 K. When applied to Joule-heating experiments, this method reveals a notable discrepancy between the measurement results and predictions made by the conventional theory based on the deformation-potential coupling with low-energy acoustic phonons. Specifically, the injected-power dependence of the electron temperature is much weaker than expected. The results strongly suggest that another mechanism causing a significant electron energy loss plays a role.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.