Mengyang Liu, Shaobo Han, Wenna Zhang, Bin Gu, Jingmei Li, Huangzhao Wei, Xin Rong, Chenglin Sun
{"title":"Boron-Induced Redispersion of Pt Species during Propane Dehydrogenation","authors":"Mengyang Liu, Shaobo Han, Wenna Zhang, Bin Gu, Jingmei Li, Huangzhao Wei, Xin Rong, Chenglin Sun","doi":"10.1021/acscatal.4c07243","DOIUrl":null,"url":null,"abstract":"In a propane dehydrogenation (PDH) reaction system, low-Pt catalysts generally suffer from rapid deactivation and poor durability due to easy sintering at high temperatures and in a reductive atmosphere. Herein, we develop a catalyst (PtSnK-B/Al<sub>2</sub>O<sub>3</sub>, named as PtSnK-B0.32) with both low Pt loading (0.15 wt %) and high durability by facile doping of trace boron into a conventional Pt-based catalyst. Density functional theory (DFT) calculations show that pure Pt clusters have weak binding energy with support, leading to a further undesired Pt sintering process. In contrast, when boron (B) is added to the Pt-based catalyst, the undesired Pt sintering process is significantly inhibited. Moreover, being initiated by propane molecules, the pure Pt clusters are readily to dissociate into Pt atoms due to their longer Pt-Pt bond lengths, then the dissociated Pt atoms are captured by B or BO<sub><i>x</i></sub> species to form stable Pt–B clusters under PDH conditions. The formation of highly dispersed Pt–B clusters allows the catalyst to achieve high intrinsic activity; compared with the catalyst without B (PtSnK, 0.14 wt % Pt), the <i>E</i><sub>a</sub> value of the B-doped catalyst is obviously reduced. Significantly, the durability of PtSnK-B0.32 is three times that of PtSnK and even twice that of 0.26PtSnK with a Pt loading of 0.26 wt %. The facile synthesis method, lower Pt content, and higher durability provide a promising application perspective.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"129 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c07243","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In a propane dehydrogenation (PDH) reaction system, low-Pt catalysts generally suffer from rapid deactivation and poor durability due to easy sintering at high temperatures and in a reductive atmosphere. Herein, we develop a catalyst (PtSnK-B/Al2O3, named as PtSnK-B0.32) with both low Pt loading (0.15 wt %) and high durability by facile doping of trace boron into a conventional Pt-based catalyst. Density functional theory (DFT) calculations show that pure Pt clusters have weak binding energy with support, leading to a further undesired Pt sintering process. In contrast, when boron (B) is added to the Pt-based catalyst, the undesired Pt sintering process is significantly inhibited. Moreover, being initiated by propane molecules, the pure Pt clusters are readily to dissociate into Pt atoms due to their longer Pt-Pt bond lengths, then the dissociated Pt atoms are captured by B or BOx species to form stable Pt–B clusters under PDH conditions. The formation of highly dispersed Pt–B clusters allows the catalyst to achieve high intrinsic activity; compared with the catalyst without B (PtSnK, 0.14 wt % Pt), the Ea value of the B-doped catalyst is obviously reduced. Significantly, the durability of PtSnK-B0.32 is three times that of PtSnK and even twice that of 0.26PtSnK with a Pt loading of 0.26 wt %. The facile synthesis method, lower Pt content, and higher durability provide a promising application perspective.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.