Sustained exposure to multivalent antigen-decorated nanoparticles generates broad anti-coronavirus responses

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-02-25 DOI:10.1016/j.matt.2025.102006
Julie Baillet, John H. Klich, Ben S. Ou, Emily L. Meany, Jerry Yan, Theodora U.J. Bruun, Ashley Utz, Carolyn K. Jons, Sebastien Lecommandoux, Eric A. Appel
{"title":"Sustained exposure to multivalent antigen-decorated nanoparticles generates broad anti-coronavirus responses","authors":"Julie Baillet, John H. Klich, Ben S. Ou, Emily L. Meany, Jerry Yan, Theodora U.J. Bruun, Ashley Utz, Carolyn K. Jons, Sebastien Lecommandoux, Eric A. Appel","doi":"10.1016/j.matt.2025.102006","DOIUrl":null,"url":null,"abstract":"The threat of future coronavirus pandemics requires developing effective vaccine technologies that provide broad and long-lasting protection against circulating and emerging strains. Here, we report a multivalent liposomal hydrogel depot vaccine technology comprising the receptor binding domain (RBD) of up to four relevant coronavirus strains from severe acute respiratory syndrome (SARS) and <em>Middle East respiratory syndrome</em> (MERS) non-covalently displayed on the surface of the liposomes within the hydrogel structure. The multivalent presentation and sustained exposure of RBD antigens improved the potency, neutralizing activity, durability, and consistency of antibody responses across homologous and heterologous coronavirus strains in a naive murine model. When administrated in animals pre-exposed to wild-type SARS-CoV-2 antigens, liposomal hydrogels elicited durable antibody responses against the homologous SARS and MERS strains for more than 6 months and elicited neutralizing activity against the immune-evasive SARS-CoV-2 variant Omicron BA.4/BA.5. Overall, the tunable liposomal hydrogel platform we report here generates robust responses against diverse coronaviruses, supporting global efforts to respond to future viral outbreaks.","PeriodicalId":388,"journal":{"name":"Matter","volume":"32 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102006","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The threat of future coronavirus pandemics requires developing effective vaccine technologies that provide broad and long-lasting protection against circulating and emerging strains. Here, we report a multivalent liposomal hydrogel depot vaccine technology comprising the receptor binding domain (RBD) of up to four relevant coronavirus strains from severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) non-covalently displayed on the surface of the liposomes within the hydrogel structure. The multivalent presentation and sustained exposure of RBD antigens improved the potency, neutralizing activity, durability, and consistency of antibody responses across homologous and heterologous coronavirus strains in a naive murine model. When administrated in animals pre-exposed to wild-type SARS-CoV-2 antigens, liposomal hydrogels elicited durable antibody responses against the homologous SARS and MERS strains for more than 6 months and elicited neutralizing activity against the immune-evasive SARS-CoV-2 variant Omicron BA.4/BA.5. Overall, the tunable liposomal hydrogel platform we report here generates robust responses against diverse coronaviruses, supporting global efforts to respond to future viral outbreaks.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信