How different is tropical cyclone precipitation over land and ocean?

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Lihao Chen, Zhanhong Ma, Jianfang Fei
{"title":"How different is tropical cyclone precipitation over land and ocean?","authors":"Lihao Chen, Zhanhong Ma, Jianfang Fei","doi":"10.1038/s41612-025-00970-9","DOIUrl":null,"url":null,"abstract":"<p>Tropical cyclone (TC) precipitation is a major cause of severe floods and landslides. This study compares the characteristics of TC precipitation over land and ocean in the Northern Hemisphere using satellite data from 2001 – 2020. An analog selection method is used to pair each landfalling TC case with an oceanic case of the same intensity and similar atmospheric environmental conditions. Here we show robust discrepancies in rainfall rate and pattern for TCs over land and ocean. The average rain rates of landfalling TCs are 27.8% lower than those of oceanic TCs. Nonetheless, the rainfall is more intense on the right side of landfalling TCs compared with oceanic TCs. This left-right difference pattern tends to be more pronounced for TCs with faster translation speeds. Numerical simulations indicate that the increased surface friction and moisture convergence are largely responsible for the increased rainfall rate on the right side of landfalling TCs.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"35 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00970-9","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tropical cyclone (TC) precipitation is a major cause of severe floods and landslides. This study compares the characteristics of TC precipitation over land and ocean in the Northern Hemisphere using satellite data from 2001 – 2020. An analog selection method is used to pair each landfalling TC case with an oceanic case of the same intensity and similar atmospheric environmental conditions. Here we show robust discrepancies in rainfall rate and pattern for TCs over land and ocean. The average rain rates of landfalling TCs are 27.8% lower than those of oceanic TCs. Nonetheless, the rainfall is more intense on the right side of landfalling TCs compared with oceanic TCs. This left-right difference pattern tends to be more pronounced for TCs with faster translation speeds. Numerical simulations indicate that the increased surface friction and moisture convergence are largely responsible for the increased rainfall rate on the right side of landfalling TCs.

Abstract Image

热带气旋在陆地和海洋上的降水有何不同?
热带气旋(TC)降水是严重洪水和山体滑坡的主要原因。本研究利用2001 - 2020年的卫星资料比较了北半球陆地和海洋上的TC降水特征。采用模拟选择方法,将每个登陆TC案例与具有相同强度和相似大气环境条件的海洋案例配对。在这里,我们显示了陆地和海洋上TCs的降雨率和模式的显著差异。登陆tc的平均降雨率比海洋tc低27.8%。尽管如此,与海洋tc相比,登陆tc右侧的降雨量更强。这种左右差异模式在翻译速度较快的tc中更为明显。数值模拟结果表明,地表摩擦和水汽辐合的增加是TCs着陆右侧降雨速率增加的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信