Correlated states controlled by a tunable van Hove singularity in moiré WSe2 bilayers

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Patrick Knüppel, Jiacheng Zhu, Yiyu Xia, Zhengchao Xia, Zhongdong Han, Yihang Zeng, Kenji Watanabe, Takashi Taniguchi, Jie Shan, Kin Fai Mak
{"title":"Correlated states controlled by a tunable van Hove singularity in moiré WSe2 bilayers","authors":"Patrick Knüppel, Jiacheng Zhu, Yiyu Xia, Zhengchao Xia, Zhongdong Han, Yihang Zeng, Kenji Watanabe, Takashi Taniguchi, Jie Shan, Kin Fai Mak","doi":"10.1038/s41467-025-57235-5","DOIUrl":null,"url":null,"abstract":"<p>Twisted transition metal dichalcogenide (TMD) bilayers have enabled the discovery of superconductivity, ferromagnetism, correlated insulators, and a series of new topological phases of matter. However, the connection between these electronic phases of matter and the underlying band structure singularities has remained largely unexplored. Here, combining magnetic circular dichroism and exciton sensing measurements, we investigate the influence of a van Hove singularity (vHS) on the correlated phases in bilayer WSe<sub>2</sub> with twist angle between 2 and 3 degrees. By tuning the vHS across the Fermi level using electric and magnetic fields, we observe Stoner ferromagnetism below moiré lattice filling one and Chern insulators at filling one. The experimental observations are supported by the continuum model band structure calculations. Our results highlight the prospect of engineering electronic phases of matter in moiré materials by tunable van Hove singularities.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"65 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57235-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Twisted transition metal dichalcogenide (TMD) bilayers have enabled the discovery of superconductivity, ferromagnetism, correlated insulators, and a series of new topological phases of matter. However, the connection between these electronic phases of matter and the underlying band structure singularities has remained largely unexplored. Here, combining magnetic circular dichroism and exciton sensing measurements, we investigate the influence of a van Hove singularity (vHS) on the correlated phases in bilayer WSe2 with twist angle between 2 and 3 degrees. By tuning the vHS across the Fermi level using electric and magnetic fields, we observe Stoner ferromagnetism below moiré lattice filling one and Chern insulators at filling one. The experimental observations are supported by the continuum model band structure calculations. Our results highlight the prospect of engineering electronic phases of matter in moiré materials by tunable van Hove singularities.

Abstract Image

由可调van Hove奇点控制的动态WSe2双分子层的相关态
扭曲过渡金属二硫化物(TMD)双分子层使得超导性、铁磁性、相关绝缘体和一系列新的物质拓扑相的发现成为可能。然而,这些物质的电子相与潜在的能带结构奇点之间的联系在很大程度上仍未被探索。本文结合磁圆二色性和激子传感测量,研究了van Hove奇点(vHS)对扭曲角为2 ~ 3度的双层WSe2中相关相的影响。通过利用电场和磁场在费米能级上调谐vHS,我们观察到在莫尔晶格填充层下的斯通纳铁磁性和在填充层上的陈氏绝缘体。实验观测结果得到了连续介质模型能带结构计算的支持。我们的研究结果强调了通过可调的范霍夫奇点在莫尔材料中工程物质的电子相的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信