Isabelle Rose Leo, Elena Kunold, Anastasia Audrey, Marianna Tampere, Jürgen Eirich, Janne Lehtiö, Rozbeh Jafari
{"title":"Functional proteoform group deconvolution reveals a broader spectrum of ibrutinib off-targets","authors":"Isabelle Rose Leo, Elena Kunold, Anastasia Audrey, Marianna Tampere, Jürgen Eirich, Janne Lehtiö, Rozbeh Jafari","doi":"10.1038/s41467-024-54654-8","DOIUrl":null,"url":null,"abstract":"<p>Proteome-wide profiling has revealed that targeted drugs can have complex protein interaction landscapes. However, it’s a challenge to profile drug targets while systematically accounting for the dynamic protein variations that produce populations of multiple proteoforms. We address this problem by combining thermal proteome profiling (TPP) with functional proteoform group detection to refine the target landscape of ibrutinib. In addition to known targets, we implicate additional specific functional proteoform groups linking ibrutinib to mechanisms in immunomodulation and cellular processes like Golgi trafficking, endosomal trafficking, and glycosylation. Further, we identify variability in functional proteoform group profiles in a CLL cohort, linked to treatment status and ex vivo response and resistance. This offers deeper insights into the impacts of functional proteoform groups in a clinical treatment setting and suggests complex biological effects linked to off-target engagement. These results provide a framework for interpreting clinically observed off-target processes and adverse events, highlighting the importance of functional proteoform group-level deconvolution in understanding drug interactions and their functional impacts with potential applications in precision medicine.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"3 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54654-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Proteome-wide profiling has revealed that targeted drugs can have complex protein interaction landscapes. However, it’s a challenge to profile drug targets while systematically accounting for the dynamic protein variations that produce populations of multiple proteoforms. We address this problem by combining thermal proteome profiling (TPP) with functional proteoform group detection to refine the target landscape of ibrutinib. In addition to known targets, we implicate additional specific functional proteoform groups linking ibrutinib to mechanisms in immunomodulation and cellular processes like Golgi trafficking, endosomal trafficking, and glycosylation. Further, we identify variability in functional proteoform group profiles in a CLL cohort, linked to treatment status and ex vivo response and resistance. This offers deeper insights into the impacts of functional proteoform groups in a clinical treatment setting and suggests complex biological effects linked to off-target engagement. These results provide a framework for interpreting clinically observed off-target processes and adverse events, highlighting the importance of functional proteoform group-level deconvolution in understanding drug interactions and their functional impacts with potential applications in precision medicine.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.