Electronic metal-support interaction modulates Cu electronic structures for CO2 electroreduction to desired products

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yong Zhang, Feifei Chen, Xinyi Yang, Yiran Guo, Xinghua Zhang, Hong Dong, Weihua Wang, Feng Lu, Zunming Lu, Hui Liu, Hui Liu, Yao Xiao, Yahui Cheng
{"title":"Electronic metal-support interaction modulates Cu electronic structures for CO2 electroreduction to desired products","authors":"Yong Zhang, Feifei Chen, Xinyi Yang, Yiran Guo, Xinghua Zhang, Hong Dong, Weihua Wang, Feng Lu, Zunming Lu, Hui Liu, Hui Liu, Yao Xiao, Yahui Cheng","doi":"10.1038/s41467-025-57307-6","DOIUrl":null,"url":null,"abstract":"<p>In this work, the Cu single-atom catalysts (SACs) supported by metal-oxides (Al<sub>2</sub>O<sub>3</sub>-Cu<sub>SAC</sub>, CeO<sub>2</sub>-Cu<sub>SAC</sub>, and TiO<sub>2</sub>-Cu<sub>SAC</sub>) are used as theoretical models to explore the correlations between electronic structures and CO<sub>2</sub>RR performances. For these catalysts, the electronic metal-support interaction (EMSI) induced by charge transfer between Cu sites and supports subtly modulates the Cu electronic structure to form different highest occupied-orbital. The highest occupied 3<i>d</i><sub><i>yz</i></sub> orbital of Al<sub>2</sub>O<sub>3</sub>-Cu<sub>SAC</sub> enhances the adsorption strength of CO and weakens C-O bonds through 3<i>d</i><sub><i>yz</i></sub>-π* electron back-donation. This reduces the energy barrier for C-C coupling, thereby promoting multicarbon formation on Al<sub>2</sub>O<sub>3</sub>-Cu<sub>SAC</sub>. The highest occupied 3<i>d</i><sub><i>z2</i></sub> orbital of TiO<sub>2</sub>-Cu<sub>SAC</sub> accelerates the H<sub>2</sub>O activation, and lowers the reaction energy for forming CH<sub>4</sub>. This over activated H<sub>2</sub>O, in turn, intensifies competing hydrogen evolution reaction (HER), which hinders the high-selectivity production of CH<sub>4</sub> on TiO<sub>2</sub>-Cu<sub>SAC</sub>. CeO<sub>2</sub>-Cu<sub>SAC</sub> with highest occupied 3<i>d</i><sub><i>x2-y2</i></sub> orbital promotes CO<sub>2</sub> activation and its localized electronic state inhibits C-C coupling. The moderate water activity of CeO<sub>2</sub>-Cu<sub>SAC</sub> facilitates *CO deep hydrogenation without excessively activating HER. Hence, CeO<sub>2</sub>-Cu<sub>SAC</sub> exhibits the highest CH<sub>4</sub> Faradaic efficiency of 70.3% at 400 mA cm<sup>−2</sup>.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"8 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57307-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the Cu single-atom catalysts (SACs) supported by metal-oxides (Al2O3-CuSAC, CeO2-CuSAC, and TiO2-CuSAC) are used as theoretical models to explore the correlations between electronic structures and CO2RR performances. For these catalysts, the electronic metal-support interaction (EMSI) induced by charge transfer between Cu sites and supports subtly modulates the Cu electronic structure to form different highest occupied-orbital. The highest occupied 3dyz orbital of Al2O3-CuSAC enhances the adsorption strength of CO and weakens C-O bonds through 3dyz-π* electron back-donation. This reduces the energy barrier for C-C coupling, thereby promoting multicarbon formation on Al2O3-CuSAC. The highest occupied 3dz2 orbital of TiO2-CuSAC accelerates the H2O activation, and lowers the reaction energy for forming CH4. This over activated H2O, in turn, intensifies competing hydrogen evolution reaction (HER), which hinders the high-selectivity production of CH4 on TiO2-CuSAC. CeO2-CuSAC with highest occupied 3dx2-y2 orbital promotes CO2 activation and its localized electronic state inhibits C-C coupling. The moderate water activity of CeO2-CuSAC facilitates *CO deep hydrogenation without excessively activating HER. Hence, CeO2-CuSAC exhibits the highest CH4 Faradaic efficiency of 70.3% at 400 mA cm−2.

Abstract Image

电子金属支撑相互作用调制Cu电子结构的二氧化碳电还原所需的产品
本文以金属氧化物(Al2O3-CuSAC、CeO2-CuSAC和TiO2-CuSAC)负载的Cu单原子催化剂(SACs)为理论模型,探讨了电子结构与CO2RR性能之间的关系。对于这些催化剂,Cu位点和载体之间的电荷转移引起的电子金属-载体相互作用(EMSI)微妙地调节了Cu的电子结构,形成不同的最高已占据轨道。Al2O3-CuSAC的3dyz最高占位轨道通过3dyz-π*电子回给增强了CO的吸附强度,减弱了C-O键。这降低了C-C耦合的能垒,从而促进了Al2O3-CuSAC上多碳的形成。TiO2-CuSAC的最高占位3dz2轨道加速了H2O的活化,降低了生成CH4的反应能。这种过活化的H2O反过来又加剧了竞争性析氢反应(HER),从而阻碍了TiO2-CuSAC上CH4的高选择性生成。3dx2-y2轨道占位最高的CeO2-CuSAC促进CO2活化,其定域电子态抑制C-C耦合。CeO2-CuSAC的水活度适中,有利于*CO深度加氢,而不会过度激活HER。因此,CeO2-CuSAC在400 mA cm−2时CH4法拉第效率最高,为70.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信