Metal vacancies in semiconductor oxides enhance hole mobility for efficient photoelectrochemical water splitting

IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL
Jun Wang, Kang Liu, Wanru Liao, Yicui Kang, Hanrui Xiao, Yingkang Chen, Qiyou Wang, Tao Luo, Jiawei Chen, Hongmei Li, Ting-Shan Chan, Shanyong Chen, Evangelina Pensa, Liyuan Chai, Fangyang Liu, Liangxing Jiang, Changxu Liu, Junwei Fu, Emiliano Cortés, Min Liu
{"title":"Metal vacancies in semiconductor oxides enhance hole mobility for efficient photoelectrochemical water splitting","authors":"Jun Wang, Kang Liu, Wanru Liao, Yicui Kang, Hanrui Xiao, Yingkang Chen, Qiyou Wang, Tao Luo, Jiawei Chen, Hongmei Li, Ting-Shan Chan, Shanyong Chen, Evangelina Pensa, Liyuan Chai, Fangyang Liu, Liangxing Jiang, Changxu Liu, Junwei Fu, Emiliano Cortés, Min Liu","doi":"10.1038/s41929-025-01300-1","DOIUrl":null,"url":null,"abstract":"Achieving efficient carrier separation in transition-metal-oxide semiconductors is crucial for their applications in optoelectronic and catalytic devices. However, the substantial disparity in mobility between holes and electrons heavily limits device performance. Here we develop a general strategy for enhancing hole mobility via reducing their effective mass through metal vacancy (VM) management. The introduction of VM yields remarkable improvements in hole mobility: 430% for WO3, 350% for TiO2 and 270% for Bi2O3. To illustrate the importance of this finding, we applied the VM concept to photoelectrochemical water splitting, where efficient carrier separation is highly coveted. In particular, VM-WO3 achieves a 4.4-fold enhancement in photo-to-current efficiency, yielding a performance of 4.8 mA cm−2 for both small- and large-scale photoelectrodes with exceptional stability for over 120 h. Efficient charge carrier separation is a substantial roadblock to achieving high performance in photoelectrochemical systems based on transition-metal oxides. Here a metal vacancy strategy is used to enhance hole mobility, resulting in general enhancement of photocurrent density in WO3, TiO2 and Bi2O3 photoanodes.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 3","pages":"229-238"},"PeriodicalIF":42.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41929-025-01300-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-025-01300-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving efficient carrier separation in transition-metal-oxide semiconductors is crucial for their applications in optoelectronic and catalytic devices. However, the substantial disparity in mobility between holes and electrons heavily limits device performance. Here we develop a general strategy for enhancing hole mobility via reducing their effective mass through metal vacancy (VM) management. The introduction of VM yields remarkable improvements in hole mobility: 430% for WO3, 350% for TiO2 and 270% for Bi2O3. To illustrate the importance of this finding, we applied the VM concept to photoelectrochemical water splitting, where efficient carrier separation is highly coveted. In particular, VM-WO3 achieves a 4.4-fold enhancement in photo-to-current efficiency, yielding a performance of 4.8 mA cm−2 for both small- and large-scale photoelectrodes with exceptional stability for over 120 h. Efficient charge carrier separation is a substantial roadblock to achieving high performance in photoelectrochemical systems based on transition-metal oxides. Here a metal vacancy strategy is used to enhance hole mobility, resulting in general enhancement of photocurrent density in WO3, TiO2 and Bi2O3 photoanodes.

Abstract Image

Abstract Image

半导体氧化物中的金属空位提高了空穴迁移率,实现了高效的光电化学水分解
在过渡金属氧化物半导体中实现有效的载流子分离对于其在光电和催化器件中的应用至关重要。然而,空穴和电子之间迁移率的巨大差异严重限制了器件的性能。在这里,我们开发了一种通过金属空位(VM)管理减少空穴有效质量来提高空穴迁移率的一般策略。VM的引入显著提高了WO3的空穴迁移率:WO3为430%,TiO2为350%,Bi2O3为270%。为了说明这一发现的重要性,我们将VM概念应用于光电化学水分解,其中高效的载流子分离是非常令人垂涎的。特别是,VM-WO3实现了4.4倍的光电流效率增强,在小型和大型光电极中产生4.8 mA cm−2的性能,并具有超过120小时的卓越稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信