Superlubricity of Small Intestine-Inspired Soft Micro-Nanopillar Arrays Under Internal Pressure

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xinping Yu, Kang Yang, Yunfei Ru, Yikai Zhang, Bowen Zhang, Lu Dai, Jiayan Zhang, Mingjie Liu, Ruochen Fang, Lei Jiang
{"title":"Superlubricity of Small Intestine-Inspired Soft Micro-Nanopillar Arrays Under Internal Pressure","authors":"Xinping Yu, Kang Yang, Yunfei Ru, Yikai Zhang, Bowen Zhang, Lu Dai, Jiayan Zhang, Mingjie Liu, Ruochen Fang, Lei Jiang","doi":"10.1002/adfm.202422774","DOIUrl":null,"url":null,"abstract":"Superlubricating materials with extremely low friction coefficients are essential for minimizing energy loss and wear in medical and engineering applications. The small intestine, characterized by villi and microvilli along with biological lubricants, achieves ultralow friction under physiological pressures, making it a promising model for biomimetic materials. However, current studies primarily focus on its micron structure, lacking comprehensive replication of its composite structure and lubrication performance under internal pressure. Here, a bioinspired artificial intestine, consisting of an organohydrogel micro-nanopillar array (OHgel//MNA) that mimics the structure as well as the hydrophilic and oleophilic species of the small intestine, is developed using a two-step fabrication process. This biomimetic material exhibits a friction coefficient of ≈0.0085, demonstrating characteristics of superlubricity. These characteristics are comparable to those of the natural intestine and ≈90% lower than those of a smooth surface, while also exhibiting stability and wear resistance under internal pressure. The findings provide valuable insights for developing advanced medical materials inspired by the lubrication system of the small intestine, particularly for applications such as artificial intestines and medical catheters.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"21 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202422774","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Superlubricating materials with extremely low friction coefficients are essential for minimizing energy loss and wear in medical and engineering applications. The small intestine, characterized by villi and microvilli along with biological lubricants, achieves ultralow friction under physiological pressures, making it a promising model for biomimetic materials. However, current studies primarily focus on its micron structure, lacking comprehensive replication of its composite structure and lubrication performance under internal pressure. Here, a bioinspired artificial intestine, consisting of an organohydrogel micro-nanopillar array (OHgel//MNA) that mimics the structure as well as the hydrophilic and oleophilic species of the small intestine, is developed using a two-step fabrication process. This biomimetic material exhibits a friction coefficient of ≈0.0085, demonstrating characteristics of superlubricity. These characteristics are comparable to those of the natural intestine and ≈90% lower than those of a smooth surface, while also exhibiting stability and wear resistance under internal pressure. The findings provide valuable insights for developing advanced medical materials inspired by the lubrication system of the small intestine, particularly for applications such as artificial intestines and medical catheters.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信