{"title":"Reduction in adsorbent granule dimensionality to strengthen lithium adsorption in low-grade salt lakes","authors":"Jun Chen, Jianguo Yu, Sen Lin","doi":"10.1002/aic.18795","DOIUrl":null,"url":null,"abstract":"Sluggish internal mass transfer within granulated adsorbents constrains the efficiency of Li<sup>+</sup> extraction from low-grade salt lakes. In this study, Li<sup>+</sup> diffusion behavior simulations using finite element analysis indicated that reducing the granule dimensionality enhanced Li<sup>+</sup> transfer in aluminum-based lithium adsorbents, with ionic strength as the driving force. Hence, low-dimensional aluminum-based adsorbent granules (LD-LDHs) with fast transport channels and highly accessible adsorption sites were directionally prepared via a wet-spinning method. Adsorption kinetics suggested LD-LDHs with reduced internal diffusion resistance achieved equilibrium in less than 30 min, which was significantly shorter than the 36 h required for larger granules prepared by conventional extrusion molding, while maintaining the performance of the encapsulated active components. During continuous lithium extraction from low-grade Qarhan old brine, LD-LDHs reached adsorption saturation in 60 min, with a 1.8-fold increased working capacity, and the desorption solution was of higher quality, favorable for subsequent lithium carbonate production processes.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"14 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18795","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sluggish internal mass transfer within granulated adsorbents constrains the efficiency of Li+ extraction from low-grade salt lakes. In this study, Li+ diffusion behavior simulations using finite element analysis indicated that reducing the granule dimensionality enhanced Li+ transfer in aluminum-based lithium adsorbents, with ionic strength as the driving force. Hence, low-dimensional aluminum-based adsorbent granules (LD-LDHs) with fast transport channels and highly accessible adsorption sites were directionally prepared via a wet-spinning method. Adsorption kinetics suggested LD-LDHs with reduced internal diffusion resistance achieved equilibrium in less than 30 min, which was significantly shorter than the 36 h required for larger granules prepared by conventional extrusion molding, while maintaining the performance of the encapsulated active components. During continuous lithium extraction from low-grade Qarhan old brine, LD-LDHs reached adsorption saturation in 60 min, with a 1.8-fold increased working capacity, and the desorption solution was of higher quality, favorable for subsequent lithium carbonate production processes.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.