Coalescence dynamics of nanofluid droplets in an expansion chamber structure microchannel

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2025-02-25 DOI:10.1002/aic.18796
Daofan Ma, Yanjun Deng, Guangwei Wang, Youguang Ma, Chunying Zhu, Xiangyang Tang
{"title":"Coalescence dynamics of nanofluid droplets in an expansion chamber structure microchannel","authors":"Daofan Ma, Yanjun Deng, Guangwei Wang, Youguang Ma, Chunying Zhu, Xiangyang Tang","doi":"10.1002/aic.18796","DOIUrl":null,"url":null,"abstract":"Nanofluid droplets have considerable applications in industry. In this study, the coalescence dynamics of nanofluid droplets in an expansion chamber structure microchannel were visually investigated; the shape and liquid bridge evolutions of droplets were studied systematically. Five droplet coalescence flow patterns were observed: non-contact, double coalescence, cascade coalescence, compact slug flow, and jetting flow regimes. Due to the adsorption of nanoparticles on the fluid interface, a solidified layer is formed, which restrains the curvature change of the liquid bridge, slowing down the shrinkage of the liquid bridge. The evolution of the liquid bridge neck width with time could be divided into two stages: the dispersed phase control stage and the continuous phase control stage. The nanoparticles could affect markedly the dispersed phase control stage, while having less effect on the continuous control stage.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"10 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18796","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofluid droplets have considerable applications in industry. In this study, the coalescence dynamics of nanofluid droplets in an expansion chamber structure microchannel were visually investigated; the shape and liquid bridge evolutions of droplets were studied systematically. Five droplet coalescence flow patterns were observed: non-contact, double coalescence, cascade coalescence, compact slug flow, and jetting flow regimes. Due to the adsorption of nanoparticles on the fluid interface, a solidified layer is formed, which restrains the curvature change of the liquid bridge, slowing down the shrinkage of the liquid bridge. The evolution of the liquid bridge neck width with time could be divided into two stages: the dispersed phase control stage and the continuous phase control stage. The nanoparticles could affect markedly the dispersed phase control stage, while having less effect on the continuous control stage.
膨胀室结构微通道中纳米流体液滴的聚结动力学
纳米液滴在工业上有着广泛的应用。研究了纳米流体液滴在膨胀腔结构微通道内的聚结动力学;系统地研究了液滴的形状和液桥演化。观察到五种液滴聚结流动模式:非接触、双聚结、级联聚结、紧密段塞流和喷射流。由于纳米颗粒在流体界面上的吸附,形成凝固层,抑制了液桥的曲率变化,减缓了液桥的收缩。液桥颈宽度随时间的演变可分为分散相控制阶段和连续相控制阶段。纳米颗粒对分散相控制阶段的影响显著,对连续相控制阶段的影响较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信