{"title":"Coalescence dynamics of nanofluid droplets in an expansion chamber structure microchannel","authors":"Daofan Ma, Yanjun Deng, Guangwei Wang, Youguang Ma, Chunying Zhu, Xiangyang Tang","doi":"10.1002/aic.18796","DOIUrl":null,"url":null,"abstract":"Nanofluid droplets have considerable applications in industry. In this study, the coalescence dynamics of nanofluid droplets in an expansion chamber structure microchannel were visually investigated; the shape and liquid bridge evolutions of droplets were studied systematically. Five droplet coalescence flow patterns were observed: non-contact, double coalescence, cascade coalescence, compact slug flow, and jetting flow regimes. Due to the adsorption of nanoparticles on the fluid interface, a solidified layer is formed, which restrains the curvature change of the liquid bridge, slowing down the shrinkage of the liquid bridge. The evolution of the liquid bridge neck width with time could be divided into two stages: the dispersed phase control stage and the continuous phase control stage. The nanoparticles could affect markedly the dispersed phase control stage, while having less effect on the continuous control stage.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"10 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18796","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanofluid droplets have considerable applications in industry. In this study, the coalescence dynamics of nanofluid droplets in an expansion chamber structure microchannel were visually investigated; the shape and liquid bridge evolutions of droplets were studied systematically. Five droplet coalescence flow patterns were observed: non-contact, double coalescence, cascade coalescence, compact slug flow, and jetting flow regimes. Due to the adsorption of nanoparticles on the fluid interface, a solidified layer is formed, which restrains the curvature change of the liquid bridge, slowing down the shrinkage of the liquid bridge. The evolution of the liquid bridge neck width with time could be divided into two stages: the dispersed phase control stage and the continuous phase control stage. The nanoparticles could affect markedly the dispersed phase control stage, while having less effect on the continuous control stage.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.