Using Spatially Rich Data Sets to Assess the Influence of Channel Characteristics on Biogeochemical Behavior in Agricultural Watersheds

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Allison M. Herreid, Brent J. Dalzell, Kade Flynn, John Baker
{"title":"Using Spatially Rich Data Sets to Assess the Influence of Channel Characteristics on Biogeochemical Behavior in Agricultural Watersheds","authors":"Allison M. Herreid, Brent J. Dalzell, Kade Flynn, John Baker","doi":"10.1029/2024wr038265","DOIUrl":null,"url":null,"abstract":"Many agricultural landscapes have undergone significant modifications to drain farmland and improve crop productivity. Subsurface field drainage, ditching and channelization of streams limit opportunities for biogeochemical processing of carbon and nutrients within the channel network. In this study, we used spatially rich water quality data collected from two contrasting regions of an agricultural watershed in south-central Minnesota, USA to assess how watershed features, such as channelization, tile drainage, and presence of lakes or wetlands, influence biogeochemical processing of nitrate (NO<sub>3</sub><sup>−</sup>) and dissolved organic carbon (DOC). In the channelized upstream region, land use is predominantly agricultural (&gt;92%) with subsurface tile drainage commonly discharging directly to the stream channel. Further downstream, the channel is more natural with increasing lakes and wetlands, including riparian wetlands. We used the concept of reach leverage to interpret biogeochemical behavior (i.e., source vs. sink) in each region of the watershed. Results indicate variability in biogeochemical behavior between the distinct watershed regions, suggesting that channel characteristics and the presence of lentic waters play a role in regulating biogeochemical processing. The upstream, channelized region acts primarily as a conservative transporter or small source of both NO<sub>3</sub><sup>−</sup> and DOC across sampling dates. In contrast, the lentic-influenced region exhibited shifts between source and sink behavior over time, especially for NO<sub>3</sub><sup>−</sup>, influenced by factors such as hydrologic connectivity and discharge. These findings highlight the value of collecting spatially resolved data to enhance our understanding of biogeochemical processing which may be useful to inform effective management and conservation strategies.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"209 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr038265","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Many agricultural landscapes have undergone significant modifications to drain farmland and improve crop productivity. Subsurface field drainage, ditching and channelization of streams limit opportunities for biogeochemical processing of carbon and nutrients within the channel network. In this study, we used spatially rich water quality data collected from two contrasting regions of an agricultural watershed in south-central Minnesota, USA to assess how watershed features, such as channelization, tile drainage, and presence of lakes or wetlands, influence biogeochemical processing of nitrate (NO3) and dissolved organic carbon (DOC). In the channelized upstream region, land use is predominantly agricultural (>92%) with subsurface tile drainage commonly discharging directly to the stream channel. Further downstream, the channel is more natural with increasing lakes and wetlands, including riparian wetlands. We used the concept of reach leverage to interpret biogeochemical behavior (i.e., source vs. sink) in each region of the watershed. Results indicate variability in biogeochemical behavior between the distinct watershed regions, suggesting that channel characteristics and the presence of lentic waters play a role in regulating biogeochemical processing. The upstream, channelized region acts primarily as a conservative transporter or small source of both NO3 and DOC across sampling dates. In contrast, the lentic-influenced region exhibited shifts between source and sink behavior over time, especially for NO3, influenced by factors such as hydrologic connectivity and discharge. These findings highlight the value of collecting spatially resolved data to enhance our understanding of biogeochemical processing which may be useful to inform effective management and conservation strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信