A Deep Dive Into the Study of Nitrogen-Doped Carbons as Electrocatalysts for the Oxygen Reduction Reaction via Design of Experiments

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-02-25 DOI:10.1002/smll.202410010
Lettie A. Smith, James N. Burrow, J. Ehren Eichler, Franklin Tang, Samantha N. Lauro, Xun Zhan, Jamie H. Warner, C. Buddie Mullins
{"title":"A Deep Dive Into the Study of Nitrogen-Doped Carbons as Electrocatalysts for the Oxygen Reduction Reaction via Design of Experiments","authors":"Lettie A. Smith,&nbsp;James N. Burrow,&nbsp;J. Ehren Eichler,&nbsp;Franklin Tang,&nbsp;Samantha N. Lauro,&nbsp;Xun Zhan,&nbsp;Jamie H. Warner,&nbsp;C. Buddie Mullins","doi":"10.1002/smll.202410010","DOIUrl":null,"url":null,"abstract":"<p>A design of experiments (DoE) approach is applied to the study of nitrogen (N)-doped carbons prepared via a molten salt templating method using the eutectic salt lithium chloride/potassium chloride (LiCl/KCl) and the precursors sucrose and melamine (N precursor). This approach is used to deconvolute effects from surface composition and porosity on the electrocatalytic performance of N-doped carbons as oxygen reduction reaction (ORR) electrocatalysts. Additionally, DoE is implemented to reveal the synthesis-structure-function relationship for the prepared materials over an entire design space. From this work, it is evident that the N precursor content has the greatest impact on the tunability of material properties (e.g., N-content, pyridinic N content, surface area, pore size distribution, etc.) followed by pyrolysis temperature and salt mass. Additionally, without adequate porosity (surface area ≥ 500 m<sup>2</sup> g<sup>−1</sup>, micropore volume &gt; 0.15 cc g<sup>−1</sup>, etc.) and electrochemically active surface area, activity and selectivity for the ORR via N-functionalization is significantly reduced. Optimization of the studied design space indicates that an N precursor content of 35 wt.%–38 wt.%, pyrolysis temperature ≤ 900 °C, and a salt mass &lt; 15 g would garner the necessary N-content (∼7–8 at%) and porosity to achieve the most active and selective N-doped carbon ORR electrocatalysts.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 13","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202410010","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A design of experiments (DoE) approach is applied to the study of nitrogen (N)-doped carbons prepared via a molten salt templating method using the eutectic salt lithium chloride/potassium chloride (LiCl/KCl) and the precursors sucrose and melamine (N precursor). This approach is used to deconvolute effects from surface composition and porosity on the electrocatalytic performance of N-doped carbons as oxygen reduction reaction (ORR) electrocatalysts. Additionally, DoE is implemented to reveal the synthesis-structure-function relationship for the prepared materials over an entire design space. From this work, it is evident that the N precursor content has the greatest impact on the tunability of material properties (e.g., N-content, pyridinic N content, surface area, pore size distribution, etc.) followed by pyrolysis temperature and salt mass. Additionally, without adequate porosity (surface area ≥ 500 m2 g−1, micropore volume > 0.15 cc g−1, etc.) and electrochemically active surface area, activity and selectivity for the ORR via N-functionalization is significantly reduced. Optimization of the studied design space indicates that an N precursor content of 35 wt.%–38 wt.%, pyrolysis temperature ≤ 900 °C, and a salt mass < 15 g would garner the necessary N-content (∼7–8 at%) and porosity to achieve the most active and selective N-doped carbon ORR electrocatalysts.

Abstract Image

氮掺杂碳作为氧还原反应电催化剂的实验设计研究
采用实验设计(DoE)方法,以共晶盐氯化锂/氯化钾(LiCl/KCl)为原料,以蔗糖和三聚氰胺为前驱体,通过熔盐模板法制备了氮掺杂碳。该方法用于解卷积氮掺杂碳作为氧还原反应(ORR)电催化剂的表面组成和孔隙率对电催化性能的影响。此外,DoE的实现揭示了整个设计空间中制备材料的合成-结构-功能关系。从这项工作中可以看出,N前驱体含量对材料性能(如N含量、吡啶N含量、表面积、孔径分布等)的可调性影响最大,其次是热解温度和盐质量。此外,如果没有足够的孔隙度(表面积≥500 m2 g−1,微孔体积>;0.15 cc g−1等),通过n官能化的ORR的电化学活性表面积、活性和选择性显著降低。优化设计空间表明,N前驱体含量为35 wt.% ~ 38 wt.%,热解温度≤900℃,盐质量为<;15g将获得所需的n含量(约7-8 %)和孔隙率,以获得最活跃和选择性的n掺杂碳ORR电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信