Synergistic Construction of Polyacrylamide Hydrogel-Modified Membranes via a Layer-by-Layer Modification Strategy for Efficient Emulsion Separation

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Rongtong Wang, Yijian Zheng, Yongkun Li, Wenjie Luo, Yuanhang Pi, Feipeng Jiao
{"title":"Synergistic Construction of Polyacrylamide Hydrogel-Modified Membranes via a Layer-by-Layer Modification Strategy for Efficient Emulsion Separation","authors":"Rongtong Wang, Yijian Zheng, Yongkun Li, Wenjie Luo, Yuanhang Pi, Feipeng Jiao","doi":"10.1021/acs.iecr.4c03767","DOIUrl":null,"url":null,"abstract":"Hydrogel was considered an optimal material for modified oil/water separation membranes due to its exceptional underwater superoleophobicity. However, the challenges of hydrogel modification include an uncontrollable coating degree and membrane pore clogging. This study introduced a novel approach to fabricating hydrogel-modified PVDF membranes by regulating the polymerization degree of polyacrylamide (PAm) through the synergistic effect of tannic acid (TA). PAm hydrogel-modified membranes with a controllable polymerization degree were constructed by using the layer-by-layer design. This approach enhanced the membrane’s wettability while maintaining pore integrity. The modified membrane achieved an average flux of 5250.9 L·m<sup>–2</sup>·h<sup>–1</sup>·bar<sup>–1</sup> during the cross-flow separation of oil-in-water emulsions containing surfactants, with an oil removal efficiency of 99.8%. Additionally, the membrane demonstrated excellent antifouling and recycling capabilities, making it highly effective in treating complex emulsions. This work provides novel insight into the development of highly fouling-resistant and high-performance hydrogel-modified oil–water separation membranes, which show great potential in the large-scale treatment of oily wastewater.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"1 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c03767","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogel was considered an optimal material for modified oil/water separation membranes due to its exceptional underwater superoleophobicity. However, the challenges of hydrogel modification include an uncontrollable coating degree and membrane pore clogging. This study introduced a novel approach to fabricating hydrogel-modified PVDF membranes by regulating the polymerization degree of polyacrylamide (PAm) through the synergistic effect of tannic acid (TA). PAm hydrogel-modified membranes with a controllable polymerization degree were constructed by using the layer-by-layer design. This approach enhanced the membrane’s wettability while maintaining pore integrity. The modified membrane achieved an average flux of 5250.9 L·m–2·h–1·bar–1 during the cross-flow separation of oil-in-water emulsions containing surfactants, with an oil removal efficiency of 99.8%. Additionally, the membrane demonstrated excellent antifouling and recycling capabilities, making it highly effective in treating complex emulsions. This work provides novel insight into the development of highly fouling-resistant and high-performance hydrogel-modified oil–water separation membranes, which show great potential in the large-scale treatment of oily wastewater.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信