UV-B stress reshapes root-associated microbial communities and networks, driven host plant resistance

IF 9.8 1区 农林科学 Q1 SOIL SCIENCE
Chuanji Zhang, Na Gao, Xiaofan Na, Kaile Li, Meiyun Pu, Hao Sun, Yanfang Song, Tong Peng, Panshuai Fei, Junjie Li, Zhenyu Cheng, Xiaoqi He, Meijin Liu, Xiaomin Wang, Paul Kardol, Yurong Bi
{"title":"UV-B stress reshapes root-associated microbial communities and networks, driven host plant resistance","authors":"Chuanji Zhang, Na Gao, Xiaofan Na, Kaile Li, Meiyun Pu, Hao Sun, Yanfang Song, Tong Peng, Panshuai Fei, Junjie Li, Zhenyu Cheng, Xiaoqi He, Meijin Liu, Xiaomin Wang, Paul Kardol, Yurong Bi","doi":"10.1016/j.soilbio.2025.109767","DOIUrl":null,"url":null,"abstract":"Elevated UV-B radiation, a growing threat to global crop production since the 1970s, impacts both plant physiology and their associated microbiomes. While the role of soil microbes in plant adaptation to abiotic stresses is well documented, the effects of aboveground UV-B radiation on root-associated microorganism remain poorly understood. This study investigated how root microbial communities in UV-B-resistant and UV-B-sensitive highland barley varieties respond to UV-B stress, uncovering core microbial populations linked to plant resistance. We showed that UV-B stress induces compositional changes in root-associated prokaryotic communities but not fungal ones. Notably, UV-B stress increased microbial connectivity in the rhizosphere of sensitive plants while diminishing it within their root-associated networks. In contrast, resistant plants displayed an opposite pattern, suggesting sensitive plants 'ask for help' from rhizospheric microbes under stress, while resistant plants maintain robust endosphere microbial interactions. A keystone bacterial group, identified via forest model analysis and affiliated with the genus <em>Mesorhizobium</em>, was significantly suppressed by UV-B stress in the rhizosphere of sensitive plants but remained stable in resistant ones. Inoculation with <em>Mesorhizobium</em> spp. enhanced growth and reduced oxidative stress in UV-B-sensitive barley seedlings, indicating its crucial role in UV-B tolerance. Our study highlights the importance of preserving specific microbial populations in the rhizosphere to bolster plant resilience against abiotic stressors.","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"242 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.soilbio.2025.109767","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Elevated UV-B radiation, a growing threat to global crop production since the 1970s, impacts both plant physiology and their associated microbiomes. While the role of soil microbes in plant adaptation to abiotic stresses is well documented, the effects of aboveground UV-B radiation on root-associated microorganism remain poorly understood. This study investigated how root microbial communities in UV-B-resistant and UV-B-sensitive highland barley varieties respond to UV-B stress, uncovering core microbial populations linked to plant resistance. We showed that UV-B stress induces compositional changes in root-associated prokaryotic communities but not fungal ones. Notably, UV-B stress increased microbial connectivity in the rhizosphere of sensitive plants while diminishing it within their root-associated networks. In contrast, resistant plants displayed an opposite pattern, suggesting sensitive plants 'ask for help' from rhizospheric microbes under stress, while resistant plants maintain robust endosphere microbial interactions. A keystone bacterial group, identified via forest model analysis and affiliated with the genus Mesorhizobium, was significantly suppressed by UV-B stress in the rhizosphere of sensitive plants but remained stable in resistant ones. Inoculation with Mesorhizobium spp. enhanced growth and reduced oxidative stress in UV-B-sensitive barley seedlings, indicating its crucial role in UV-B tolerance. Our study highlights the importance of preserving specific microbial populations in the rhizosphere to bolster plant resilience against abiotic stressors.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil Biology & Biochemistry
Soil Biology & Biochemistry 农林科学-土壤科学
CiteScore
16.90
自引率
9.30%
发文量
312
审稿时长
49 days
期刊介绍: Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信