Guiding generative AI

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Russell Johnson
{"title":"Guiding generative AI","authors":"Russell Johnson","doi":"10.1038/s41589-025-01854-y","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"21 3","pages":"311-311"},"PeriodicalIF":12.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41589-025-01854-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
引导生成AI
基于实验室的蛋白质进化是一种提高酶活性或开发基于蛋白质的结合物的方法,但它是非常劳动密集型的。相比之下,计算方法(潜在地)提供快速的结果,而无需费力的实验室工作;然而,由计算工作流提出的设计通常不能提供活动所需的改进。最近,生成式机器学习方法在提出静态蛋白质支架方面取得了进展,但将这些方法扩展到酶反应性或其他蛋白质功能的设计中一直存在问题,并且优化初始模型通常仍然需要基于实验室的定向进化。现在,Jiang等人开发了一种称为EVOLVEpro的计算方法,以帮助指导实验定向进化工作。EVOLVEpro结合了蛋白质语言模型和主动学习层。蛋白质语言模型是一种机器学习算法,可以分析和学习蛋白质序列数据集的模式。主动学习层使用迭代过程解释蛋白质语言模型,以破译序列和实验确定的活动之间的关系。基于随机森林设计,主动学习层可以在迭代的实验测试中同时优化多种蛋白质特性,每轮使用的数据点少至10个数据点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信