{"title":"Progress on intelligent metasurfaces for signal relay, transmitter, and processor","authors":"Chao Qian, Longwei Tian, Hongsheng Chen","doi":"10.1038/s41377-024-01729-2","DOIUrl":null,"url":null,"abstract":"<p>Pursuing higher data rate with limited spectral resources is a longstanding topic that has triggered the fast growth of modern wireless communication techniques. However, the massive deployment of active nodes to compensate for propagation loss necessitates high hardware expenditure, energy consumption, and maintenance cost, as well as complicated network interference issues. Intelligent metasurfaces, composed of a number of subwavelength passive or active meta-atoms, have recently found to be a new paradigm to actively reshape wireless communication environment in a green way, distinct from conventional works that passively adapt to the surrounding. In this review, we offer a unified perspective on how intelligent metasurfaces can facilitate wireless communication in three manners: signal relay, signal transmitter, and signal processor. We start by the basic modeling of wireless channel and the evolution of metasurfaces from passive, active to intelligent metasurfaces. Integrated with various deep learning algorithms, intelligent metasurfaces adapt to cater for the ever-changing environments without human intervention. Then, we overview specific experimental advancements using intelligent metasurfaces. We conclude by identifying key issues in the practical implementations of intelligent metasurfaces, and surveying new directions, such as gain metasurfaces and knowledge migration.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"31 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01729-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Pursuing higher data rate with limited spectral resources is a longstanding topic that has triggered the fast growth of modern wireless communication techniques. However, the massive deployment of active nodes to compensate for propagation loss necessitates high hardware expenditure, energy consumption, and maintenance cost, as well as complicated network interference issues. Intelligent metasurfaces, composed of a number of subwavelength passive or active meta-atoms, have recently found to be a new paradigm to actively reshape wireless communication environment in a green way, distinct from conventional works that passively adapt to the surrounding. In this review, we offer a unified perspective on how intelligent metasurfaces can facilitate wireless communication in three manners: signal relay, signal transmitter, and signal processor. We start by the basic modeling of wireless channel and the evolution of metasurfaces from passive, active to intelligent metasurfaces. Integrated with various deep learning algorithms, intelligent metasurfaces adapt to cater for the ever-changing environments without human intervention. Then, we overview specific experimental advancements using intelligent metasurfaces. We conclude by identifying key issues in the practical implementations of intelligent metasurfaces, and surveying new directions, such as gain metasurfaces and knowledge migration.