PregMedNet: Multifaceted Maternal Medication Impacts on Neonatal Complications.

Yeasul Kim, Ivana Maric, Chloe Kashiwagi, Lichy Han, Philip Chung, Jonathan Reiss, Lindsay D Butcher, Kaitlin J Caoili, Eloise Berson, Lei Xue, Camilo Espinosa, Tomin James, Sayane Shome, Feng Xie, Marc Ghanem, David Seong, Alan Chang, Momsen Reincke, Samson Mataraso, Chi-Hung Shu, Davide De Francesco, Martin Becker, Wasan Kumar, Ron Wong, Brice Gaudilliere, Martin Angst, Gary M Shaw, Brian Bateman, David Stevenson, Lance Prince, Nima Aghaeepour
{"title":"PregMedNet: Multifaceted Maternal Medication Impacts on Neonatal Complications.","authors":"Yeasul Kim, Ivana Maric, Chloe Kashiwagi, Lichy Han, Philip Chung, Jonathan Reiss, Lindsay D Butcher, Kaitlin J Caoili, Eloise Berson, Lei Xue, Camilo Espinosa, Tomin James, Sayane Shome, Feng Xie, Marc Ghanem, David Seong, Alan Chang, Momsen Reincke, Samson Mataraso, Chi-Hung Shu, Davide De Francesco, Martin Becker, Wasan Kumar, Ron Wong, Brice Gaudilliere, Martin Angst, Gary M Shaw, Brian Bateman, David Stevenson, Lance Prince, Nima Aghaeepour","doi":"10.1101/2025.02.13.25322242","DOIUrl":null,"url":null,"abstract":"<p><p>While medication use is common among pregnant women, medication safety remains insufficiently characterized because studies in pregnant women are challenging due to safety concerns. The recent digitization of healthcare databases and advances in computational methods have created new opportunities for large-scale, retrospective drug safety evaluations. Here, we present PregMedNet, a platform that characterizes multifaceted maternal medication effects on neonatal outcomes during pregnancy, covering more than 27,000 drug-disease pairs across 1,152 medications and 24 outcomes. These results encompass known and novel odds ratios (ORs), adjusted ORs, and drug-drug interactions, systematically analyzed using nationwide claims data and an advanced machine learning pipeline. Notably, one of the newly discovered associations was experimentally validated in vivo. This supports the reliability of PregMedNet findings and demonstrates the utility of claims data and machine learning for perinatal medication safety studies. Additionally, potential biological mechanisms underlying the associations were explored using a graph learning method, providing candidate pathways for future mechanistic investigations. We expect that PregMedNet will contribute to advancing maternal medication safety and improving neonatal outcomes by providing extensive, multifaceted drug safety information on this previously underrepresented population.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844599/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.13.25322242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While medication use is common among pregnant women, medication safety remains insufficiently characterized because studies in pregnant women are challenging due to safety concerns. The recent digitization of healthcare databases and advances in computational methods have created new opportunities for large-scale, retrospective drug safety evaluations. Here, we present PregMedNet, a platform that characterizes multifaceted maternal medication effects on neonatal outcomes during pregnancy, covering more than 27,000 drug-disease pairs across 1,152 medications and 24 outcomes. These results encompass known and novel odds ratios (ORs), adjusted ORs, and drug-drug interactions, systematically analyzed using nationwide claims data and an advanced machine learning pipeline. Notably, one of the newly discovered associations was experimentally validated in vivo. This supports the reliability of PregMedNet findings and demonstrates the utility of claims data and machine learning for perinatal medication safety studies. Additionally, potential biological mechanisms underlying the associations were explored using a graph learning method, providing candidate pathways for future mechanistic investigations. We expect that PregMedNet will contribute to advancing maternal medication safety and improving neonatal outcomes by providing extensive, multifaceted drug safety information on this previously underrepresented population.

PregMedNet:孕产妇用药对新生儿并发症的多方面影响。
虽然药物摄入在孕妇中很常见,但对用药安全的研究仍然不足,导致对患者和医护人员的指导不明确。PregMedNet 基于对美国索赔数据库中 119 万个母婴二元组的系统分析,提供了一个多方面的孕产妇用药安全框架,从而弥补了这一不足。我们采用了一种新颖的混杂因素调整方法,系统地控制了多种药物-疾病配对的混杂因素,有力地识别了已知和新的孕产妇用药效应。值得注意的是,其中一项新发现的关联已通过实验验证,证明了索赔数据和机器学习在围产期用药安全研究中的可靠性。此外,新发现关联的潜在生物机制是通过图学习方法生成的。这些发现凸显了 PregMedNet 在促进孕期安全用药和孕产妇-新生儿结局方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信