A biomimetic dual-targeting nanomedicine for pancreatic cancer therapy†

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Guihua Zhou, Yuan Zhang, Zhiwei Cai, Hongfei Yao, Meng Liu, Chongyi Jiang and Zhen Cheng
{"title":"A biomimetic dual-targeting nanomedicine for pancreatic cancer therapy†","authors":"Guihua Zhou, Yuan Zhang, Zhiwei Cai, Hongfei Yao, Meng Liu, Chongyi Jiang and Zhen Cheng","doi":"10.1039/D4TB02206H","DOIUrl":null,"url":null,"abstract":"<p >The physiological characteristics of pancreatic cancer (PC) involve the interplay between tumor cells, cancer-associated fibroblasts (CAF) and the extracellular matrix (ECM). This intricate microenvironment contributes to the cancer's resistance to conventional chemoradiotherapy and its poor prognosis. Carbon monoxide (CO), a promising molecule in gas therapy, can effectively penetrate solid tumors and induce tumor cell apoptosis at high concentrations. However, precise dosing control remains a significant challenge in the administration of exogenous CO, and its inherent toxicity at elevated concentrations presents substantial barriers to clinical translation. In this study, we developed a novel biomimetic nanomedical drug delivery system capable of simultaneously targeting CAF and PC tumor cells, degrading the ECM, and inhibiting tumor growth. The strategy integrates iron carbonyl (FeCO), an anti-cancer agent, and losartan (Lo), a drug that degrades tumor matrix, into a biodegradable nanomaterial—mesoporous polydopamine (MPDA). The resulting nanoparticles are then coated with CAF cell membranes (CAFM) and functionalized with plectin-1 targeted peptide (PTP), a molecule that targets PC cells, to construct the (Lo + FeCO)@MPDA@CAFM-PTP nanomedicine. This system utilizes the homologous adhesion properties of CAF membranes to target CAFs, delivering Lo to degrade the ECM. Following ECM degradation, the nanomedicine penetrates further to bind to PC tumor cells <em>via</em> PTP. Then anti-cancer drug FeCO is released to react with the excessive reactive oxygen species (ROS) in PC tumor cells to produce high concentrations of CO, effectively inducing tumor cell apoptosis. The (Lo + FeCO)@MPDA@CAFM-PTP nanomedicine demonstrated significant cytotoxicity against Panc-1 cells <em>in vitro</em> and effectively inhibited PC tumor growth <em>in vivo</em>. This innovative approach holds great promise for advancing pancreatic cancer treatment.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 11","pages":" 3716-3729"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02206h","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The physiological characteristics of pancreatic cancer (PC) involve the interplay between tumor cells, cancer-associated fibroblasts (CAF) and the extracellular matrix (ECM). This intricate microenvironment contributes to the cancer's resistance to conventional chemoradiotherapy and its poor prognosis. Carbon monoxide (CO), a promising molecule in gas therapy, can effectively penetrate solid tumors and induce tumor cell apoptosis at high concentrations. However, precise dosing control remains a significant challenge in the administration of exogenous CO, and its inherent toxicity at elevated concentrations presents substantial barriers to clinical translation. In this study, we developed a novel biomimetic nanomedical drug delivery system capable of simultaneously targeting CAF and PC tumor cells, degrading the ECM, and inhibiting tumor growth. The strategy integrates iron carbonyl (FeCO), an anti-cancer agent, and losartan (Lo), a drug that degrades tumor matrix, into a biodegradable nanomaterial—mesoporous polydopamine (MPDA). The resulting nanoparticles are then coated with CAF cell membranes (CAFM) and functionalized with plectin-1 targeted peptide (PTP), a molecule that targets PC cells, to construct the (Lo + FeCO)@MPDA@CAFM-PTP nanomedicine. This system utilizes the homologous adhesion properties of CAF membranes to target CAFs, delivering Lo to degrade the ECM. Following ECM degradation, the nanomedicine penetrates further to bind to PC tumor cells via PTP. Then anti-cancer drug FeCO is released to react with the excessive reactive oxygen species (ROS) in PC tumor cells to produce high concentrations of CO, effectively inducing tumor cell apoptosis. The (Lo + FeCO)@MPDA@CAFM-PTP nanomedicine demonstrated significant cytotoxicity against Panc-1 cells in vitro and effectively inhibited PC tumor growth in vivo. This innovative approach holds great promise for advancing pancreatic cancer treatment.

Abstract Image

用于胰腺癌治疗的生物仿生双靶向纳米药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信