Spectral Differentiation of Esophageal Precancerous Lesion Staging and an Improved Feature Wavelength Selection Method Based on Enhanced Fox Algorithm.

Jinbao Zhang, Shuangli Liu, Fanrong Wang, Li Wang, Jiamin Qin, Liming Wen, Weijia Wan
{"title":"Spectral Differentiation of Esophageal Precancerous Lesion Staging and an Improved Feature Wavelength Selection Method Based on Enhanced Fox Algorithm.","authors":"Jinbao Zhang, Shuangli Liu, Fanrong Wang, Li Wang, Jiamin Qin, Liming Wen, Weijia Wan","doi":"10.1002/jbio.202400518","DOIUrl":null,"url":null,"abstract":"<p><p>Near-infrared (NIR) spectroscopy, known for its non-destructive, rapid, and precise nature, captures spectral responses to chemical bond changes in cancerous tissues. This provides a promising approach for accurate cancer staging and identifying spectral differences between cancerous and healthy tissues. In this study, NIR data from esophageal lesions excised via endoscopic submucosal dissection were analyzed using partial least squares discriminant analysis (PLS-DA) to classify normal tissues, low-grade, and high-grade intraepithelial neoplasia, confirming its feasibility for staging diagnosis. To enhance wavelength selection, the FOX algorithm, a swarm intelligence optimization method, is improved with two modifications: a nonlinear time-varying sigmoid transfer function and mirror selection. These enhancements are combined to form an improved FOX algorithm (iFOX) for wavelength selection. iFOX effectively enhances the algorithm's stability while enhancing classification performance.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400518"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Near-infrared (NIR) spectroscopy, known for its non-destructive, rapid, and precise nature, captures spectral responses to chemical bond changes in cancerous tissues. This provides a promising approach for accurate cancer staging and identifying spectral differences between cancerous and healthy tissues. In this study, NIR data from esophageal lesions excised via endoscopic submucosal dissection were analyzed using partial least squares discriminant analysis (PLS-DA) to classify normal tissues, low-grade, and high-grade intraepithelial neoplasia, confirming its feasibility for staging diagnosis. To enhance wavelength selection, the FOX algorithm, a swarm intelligence optimization method, is improved with two modifications: a nonlinear time-varying sigmoid transfer function and mirror selection. These enhancements are combined to form an improved FOX algorithm (iFOX) for wavelength selection. iFOX effectively enhances the algorithm's stability while enhancing classification performance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信