Resilient consensus control for networked robotic manipulators under actuator faults and deception attacks.

Van-Truong Nguyen, Van-Tam Ngo, Le Anh Tuan, Dinh-Hieu Phan, Phan Xuan Tan
{"title":"Resilient consensus control for networked robotic manipulators under actuator faults and deception attacks.","authors":"Van-Truong Nguyen, Van-Tam Ngo, Le Anh Tuan, Dinh-Hieu Phan, Phan Xuan Tan","doi":"10.1016/j.isatra.2025.02.013","DOIUrl":null,"url":null,"abstract":"<p><p>Resilient consensus control refers to a system's ability to maintain agreement among its components despite disruptions, failures, or malicious attacks. This paper introduces a resilient control algorithm for a group of robotic manipulators to achieve leader-follower consensus within their workspace, despite actuator faults and deception attacks affecting exchanged signals. The proposed approach leverages adaptive control algorithms to develop the control laws. It begins by introducing an adaptive fault-tolerant tracking control to ensure tracking performance despite model uncertainties, actuator faults, and external disturbances. An adaptive observer is then developed to mitigate the effects of false data injections caused by deception attacks. A key feature of this control framework is its ability to operate without requiring fault and attack detection, thereby improving the system's robustness and applicability. The stability of the network and the convergence of the filtered errors are demonstrated using Lyapunov techniques and the equivalence principle. The proposed control framework is validated through numerical simulations involving a network of four heterogeneous manipulators, with results confirming the approach's effectiveness in enhancing system reliability.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.02.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Resilient consensus control refers to a system's ability to maintain agreement among its components despite disruptions, failures, or malicious attacks. This paper introduces a resilient control algorithm for a group of robotic manipulators to achieve leader-follower consensus within their workspace, despite actuator faults and deception attacks affecting exchanged signals. The proposed approach leverages adaptive control algorithms to develop the control laws. It begins by introducing an adaptive fault-tolerant tracking control to ensure tracking performance despite model uncertainties, actuator faults, and external disturbances. An adaptive observer is then developed to mitigate the effects of false data injections caused by deception attacks. A key feature of this control framework is its ability to operate without requiring fault and attack detection, thereby improving the system's robustness and applicability. The stability of the network and the convergence of the filtered errors are demonstrated using Lyapunov techniques and the equivalence principle. The proposed control framework is validated through numerical simulations involving a network of four heterogeneous manipulators, with results confirming the approach's effectiveness in enhancing system reliability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信