Hemodynamic Evaluation of Norwood Aortic Arch Geometry Compared to Native Arch Controls.

IF 1.7 4区 医学 Q4 BIOPHYSICS
Aloma Blanch-Granada, John F LaDisa, Margaret M Samyn, Joseph R Cava, Stephanie S Handler, Jennifer F Gerardin, Benjamin Goot, Mehdi Maadooliat, Viktor Hraška
{"title":"Hemodynamic Evaluation of Norwood Aortic Arch Geometry Compared to Native Arch Controls.","authors":"Aloma Blanch-Granada, John F LaDisa, Margaret M Samyn, Joseph R Cava, Stephanie S Handler, Jennifer F Gerardin, Benjamin Goot, Mehdi Maadooliat, Viktor Hraška","doi":"10.1115/1.4068009","DOIUrl":null,"url":null,"abstract":"<p><p>The Norwood procedure creates a reconstructed neo-aorta to provide unobstructed systemic cardiac output for hypoplastic left heart syndrome patients. We used patient-specific computational fluid dynamics (CFD) simulations incorporating physiologic boundary conditions to quantify hemodynamics for reconstructed aortic arch geometries versus native aortic arches from a control group of single ventricle patients. We hypothesized that reconstructed arches from Norwood patients (n = 5) would experience significant differences in time-averaged wall shear stress normalized to body surface area (TAWSSnBSA), oscillatory shear index (OSI), energy efficiency (Eeff), and energy loss (EL) versus controls (n = 3). CFD simulations were conducted using 3 T cardiac magnetic resonance imaging, blood flow, and pressure data. Simulations incorporated downstream vascular resistance and compliance to replicate patient physiology. TAWSSnBSA and OSI were quantified axially and circumferentially. Global differences in Eeff and EL were compared. Significance was assessed by Mann-Whitney U test. Norwood patients had higher TAWSSnBSA distal to the transverse arch at locations of residual narrowing presenting following coarctation correction, as well as higher OSI within ascending aorta and transverse arch regions (p < 0.05). EL correlated with patient features including cardiac output (r = 0.9) and BT-shunt resistance (r = -0.63) but did not correlate with arch measurements or morphology. These results indicate reconstructed arches from Norwood patients are exposed to altered wall shear stress and energy indices linked to cellular proliferation and inefficiency in prior studies. These results may help clinicians further understand what constitutes an optimally reconstructed arch after confirmation in larger studies.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4068009","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Norwood procedure creates a reconstructed neo-aorta to provide unobstructed systemic cardiac output for hypoplastic left heart syndrome patients. We used patient-specific computational fluid dynamics (CFD) simulations incorporating physiologic boundary conditions to quantify hemodynamics for reconstructed aortic arch geometries versus native aortic arches from a control group of single ventricle patients. We hypothesized that reconstructed arches from Norwood patients (n = 5) would experience significant differences in time-averaged wall shear stress normalized to body surface area (TAWSSnBSA), oscillatory shear index (OSI), energy efficiency (Eeff), and energy loss (EL) versus controls (n = 3). CFD simulations were conducted using 3 T cardiac magnetic resonance imaging, blood flow, and pressure data. Simulations incorporated downstream vascular resistance and compliance to replicate patient physiology. TAWSSnBSA and OSI were quantified axially and circumferentially. Global differences in Eeff and EL were compared. Significance was assessed by Mann-Whitney U test. Norwood patients had higher TAWSSnBSA distal to the transverse arch at locations of residual narrowing presenting following coarctation correction, as well as higher OSI within ascending aorta and transverse arch regions (p < 0.05). EL correlated with patient features including cardiac output (r = 0.9) and BT-shunt resistance (r = -0.63) but did not correlate with arch measurements or morphology. These results indicate reconstructed arches from Norwood patients are exposed to altered wall shear stress and energy indices linked to cellular proliferation and inefficiency in prior studies. These results may help clinicians further understand what constitutes an optimally reconstructed arch after confirmation in larger studies.

诺伍德主动脉弓几何形状与原生弓对照的血流动力学评价。
诺伍德手术创建重建的新主动脉,为左心发育不全综合征(HLHS)患者提供通畅的全身心输出量(CO)。我们使用患者特异性计算流体动力学(CFD)模拟,结合生理边界条件来量化重建主动脉弓几何形状与来自单心室对照组的原生主动脉弓的血流动力学。我们假设来自Norwood患者(n=5)的重建弓与对照组(n=3)相比,在按体表面积标准化的时间平均壁剪切应力(TAWSSnBSA)、振荡剪切指数(OSI)、能量效率(Eeff)和能量损失(EL)方面存在显著差异。利用3T心脏磁共振成像、血流和血压数据进行CFD模拟。模拟纳入下游血管阻力和顺应性来复制患者生理。纵向和周向量化TAWSSnBSA和OSI。比较Eeff和EL的全球差异。Mann?惠特尼测试。Norwood患者在缩窄矫正后出现残余狭窄的横弓(TA)远端TAWSSnBSA较高,升主动脉(AAo)和TA区域的OSI较高(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信